Micromechanical sensor and method for its production

Measuring and testing – Fluid pressure gauge – Electrical

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06389902

ABSTRACT:

BACKGROUND OF THE INVENTION
Field of the Invention
The invention relates to a micromechanical sensor including a substrate, an epitaxially grown layer projecting over the entire substrate surface, a membrane, a counterelectrode, a rear opening, and a cavity which is arranged between the membrane and the counterelectrode. In addition, a method of producing the above-described micromechanical sensor is described.
Micromechanical sensors are described in a series of documents. For example, U.S. Pat. No. 5,110,373 describes a method of producing a silicon membrane, which is used in micromechanical sensors. JP 63084072 shows a pressure sensor and a method for its production.
In applications which involve low costs and the smallest possible space requirement, such as pressure sensors, microphones or acceleration sensors, miniaturized micromechanical sensors with semiconductor circuit elements integrated on the chip are needed.
A micromechanical sensor for applications in acoustics is described in U.S. Pat. No. 5,146,435. The sensor specified includes a movable membrane and a supporting structure made of a silicon substrate. Arranged above the substrate is a silicon counterelectrode, which forms a cavity between the membrane and the counterelectrode. The counterelectrode and the membrane are designed to be conductive by suitable doping of the silicon, which produces a capacitor structure. If the membrane is excited to vibrate, the capacitance of the capacitor changes. The capacitance is determined with the aid of metal contacts arranged on the top of the structure. An embodiment with an integrated drive and evaluation electronics unit is not specified.
In the sensor structure specified, the counterelectrode projects beyond the substrate surface. The counterelectrode is on the top of the sensor. For the purposes of connecting the cavity to the surroundings, ventilation openings are incorporated in the counterelectrode. Underneath the membrane, the wafer is provided with an opening, which likewise produces connection between the membrane surface and the surroundings. Sound vibrations can get directly to the membrane through the opening on the underside and excite the membrane to vibrate.
German patent application 196 48 424.3 describes a micromechanical sensor having an integrated circuit, which can be used in pressure and sound measurements. The sensor has a membrane surface arranged in the direction of the top. Underneath the membrane there is a cavity. The counterelectrode is arranged in the area of the substrate. The counterelectrode has ventilation openings in order to reduce the resonant frequency of the membrane. The ventilation openings are arranged in the direction of the underside of the sensor and connect the volume of the cavity to the underside of the sensor. During the production of the micromechanical sensor described, the starting point is an SOI wafer (silicon oxide isolator). An SOI wafer includes the following layers: monocrystalline silicon/silicon dioxide/monocrystalline silicon. After the sensor structure on the top of the SOI wafer has been finished, a cavity is produced on the underside of the chip in an additional etching step. The cavity exposes the counterelectrode with the ventilation openings. The etching of these openings on the underside is carried out selectively with respect to silicon oxide, using KOH or TMAH.
With respect to these etchants, the silicon oxide layer of the SOI substrate constitutes an etch stop.
It has now been found that, during the production of micromechanical sensors, the use of KOH for etching the rear entails disadvantages. It has been shown that, during the etching process, KOH can attack structures already located on the surface of the sensor, for example layers of aluminum on the top of the micromechanical sensor. If micromechanical sensors are produced with membranes which have additional openings, the result is particular problems. These additional openings in the membrane are produced either for simple production of the cavity or in order to reduce the resonant frequency. During the etching of the rear openings, it is possible during the fabrication sequence for complete destruction of subareas of the membrane to occur, and therefore for contact to occur between the acid and the top of the micromechanical sensor.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a micromechanical sensor and a method for producing the micromechanical sensor which overcomes the above-mentioned disadvantageous of the prior art apparatus and methods of this general type. In particular, by avoiding these disadvantages, the economy of the production method is to be increased.
With the foregoing and other objects in view there is provided, in accordance with the invention a method of producing a micromechanical sensor, that includes steps of: providing a doped semiconductor wafer; applying an epitaxial layer on the wafer and ensuring that at least a portion of a region of the epitaxial layer that faces the wafer is doped such that a jump in a charge carrier density occurs at an interface between the wafer and the epitaxial layer; etching ventilation openings through the epitaxial layer; applying at least one sacrificial layer, at least one spacer layer, and a membrane on the epitaxial layer; etching an opening in a rear of the wafer using an etching method such that the etching progresses towards a top of the wafer and stops at an interface between the wafer and the epitaxial layer by a changed charge carrier concentration; and removing the at least one sacrificial layer with an etchant to expose the ventilation openings and to form a membrane, a counterelectrode disposed underneath the membrane, and a cavity disposed between the membrane and the counterelectrode, the ventilation openings connecting the cavity to the opening in the rear of the wafer.
The etching mode used for producing the rear openings is one which is stopped by a change in the charge carrier concentration in the material to be etched during the etching process.
In accordance with an added mode of the invention, an electrochemical etching process is used to perform the step of etching the opening in the rear of the wafer.
In accordance with an additional mode of the invention,
3
. the step of etching the opening in the rear of the wafer is performed in two steps: first, a step of wet chemically etching is performed for a defined time period until the etching is close to the interface between the wafer and epitaxial layer; and second, a step of electrochemically etching is performed. The electrochemically etching is stopped by the changed charge carrier concentration between the wafer and the epitaxial layer.
In accordance with another mode of the invention, the ventilation openings are filled with a sacrificial material.
In accordance with a further mode of the invention, a semiconductor circuit is applied on the epitaxial layer after formation of the membrane.
In accordance with a further added mode of the invention, a semiconductor circuit is applied on the epitaxial layer during application of layers needed to form the membrane.
With the foregoing and other objects in view there is provided, in accordance with the invention a micromechanical sensor, that includes: a substrate having a surface and formed from a doped semiconductor material; an epitaxially grown layer projecting over the entire surface of the substrate; a membrane configured on top of the epitaxial layer and made predominantly from a material selected from the group consisting of polycrystalline silicon and monocrystalline silicon; a counterelectrode disposed underneath the membrane; a rear opening formed in the substrate; and a cavity formed between the membrane and the counterelectrode; The epitaxial layer has an area, that faces the substrate, with at least a portion thereof that is doped such that a jump in a charge carrier concentration occurs at an interface between the substrate and the epitaxial layer.
In accordance with an added feature of the invention, the substrate is

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Micromechanical sensor and method for its production does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Micromechanical sensor and method for its production, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Micromechanical sensor and method for its production will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2892687

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.