Measuring and testing – Speed – velocity – or acceleration – Acceleration determination utilizing inertial element
Reexamination Certificate
2001-05-21
2003-07-22
Moller, Richard A. (Department: 2856)
Measuring and testing
Speed, velocity, or acceleration
Acceleration determination utilizing inertial element
C073S514260, C073S514320, C073S514370, C359S213100
Reexamination Certificate
active
06595055
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a micromechanical component comprising a movable portion which can be caused to carry out resonant oscillations, i.e. an oscillating body. In particular, the present invention relates to micromechanical components of such a nature that an oscillation of the oscillating body out of the chip plane, i.e. vertically to the chip plane, is produced.
DESCRIPTION OF PRIOR ART
The functionality of certain micromechanical actuators, e.g. actuators designed to deflect of light, is based on the deflection of a movable element out of the chip plane. The movable element is connected to the rest of the chip via a bending or torsion spring. In order to achieve deflection, it is, on the one hand, known to implement the movable part as an electrode and to use a suitable counterelectrode so that the actuator will be driven by an electric torque. On the other hand, it is known to provide the movable part in the chip plane with conducting tracks in the form of a coil so that, when current flows through the conducting tracks in the magnetic field, a magnetic torque can be used for the purpose of driving.
In many micromechanical components the counterelectrode is arranged below the movable electrode so that, upon application of a voltage, an electric torque can be used for deflection from the chip plane. For producing such components, two fundamental approaches to a solution exist.
According to the first approach, the substrate, which can serve as a counterelectrode itself, or a counterelectrode structured from metal and arranged on the substrate has first applied thereto a sacrificial layer consisting e.g. of silicon dioxide or of a photoresist. On this sacrificial layer the movable electrode is then formed making use of a suitable conductive material, e.g. aluminium or a heavily doped polysilicon. Finally, the sacrificial layer is removed. M. Fischer describes e.g. in “Electrostatically deflectable polysilicon torsional mirrors” in Sensor and Actuators A 44 (1994), pp. 83 et seq., a method in which the silicon substrate defines the counterelectrode, the sacrificial layer consists of silicon and the movable electrode is produced from heavily doped polysilicon. In the case of this method the electrode gap is determined by the thickness of the sacrificial layer so that electrode gaps having an arbitrary size cannot be realized by means of this method or similar methods. Hence, actuators having large lateral dimensions and a large deflection angle cannot be produced.
The second fundamental approach to a solution is based on a hybrid set-up. According to this approach, the counterelectrode and the movable part are produced separately from one another and combined towards the end of the production process. For example, H. Löwe describes e.g. in “Me&bgr;technische Anforderungen bei der Herstellung von Silizium-Mikrospiegeln” in Sensor 95 (congress volume), pp. 631 et seq., a set-up comprising a silicon frame in which the movable part is supported and a supporting plate which includes the counterelectrode. By means of this approach to a solution large electrode gaps can be realized. This approach to a solution entails, however, the disadvantage that suitably high driving voltages are required. In addition, the separate production of the micromechanical structure and of the supporting plate make the process complicated and expensive.
In the above-mentioned components, in which the counterelectrode is arranged below the movable electrode, the amplitude of the oscillation of the movable part can, of course, not exceed the size of the electrode gap. When a larger electrode gap is used for increasing the amplitude, it will, on the other hand, also be necessary to increase the driving voltage so as to be able to couple in the necessary energy per oscillation cycle. It is therefore not possible to achieve by means of this set-up a large amplitude making use of low driving voltages.
S. Miller describes e.g. in “Scaling Torsional Cantilevers for Scanning Probe Microscope Arrays: Theory and Experiment”; in Transducers '97 (1997) pp. 445 et seq., a set-up in the case of which the movable part of the micromechanical component can be deflected out of the chip plane without making use of a counterelectrode which is arranged below the movable electrode. The set-up described in this publication is provided with a pivotably supported cantilever which can be driven by capacitive actuators. The cantilever is provided with a plurality of interdigitated electrodes for this purpose. These movable interdigitated electrodes define together with the fixed interdigitated electrodes the capacitive actuators which take advantage of the so-called electrostatic comb drive levitation effect. In the case of this effect, a vertically asymmetric field acts on the movable electrodes and this results in a vertical force which causes the movable electrodes and, consequently, the movable cantilever to move away from the substrate. This effect can be utilized for causing static displacements as well as oscillations of the cantilever. In order to achieve the asymmetric field distribution, which causes the cantilever to move out of the chip plane, it will always be necessary that a substrate is provided adjacent the arrangement described, since, neglecting manufacturing tolerances, a torque permitting a deflection out of the chip plane would otherwise not exist. Only the existence of the substrate changes, when there is a suitable potential distribution, the field pattern such that a vertical force component will be created, which can be used for the purpose of deflection. It follows that a small distance between the movable electrodes and the substrate is here again of essential importance so as to permit the utilization of fringe effects which is required for a movement at right angles to the chip plane. Large amplitudes in the case of large lateral dimensions of the movable element can therefore not be achieved in this case either.
N. Asada describes in “Silicon Micromachined Two-Dimensional Galvano Optical Scanner” in IEEE Transactions on Magnetics (30) 6 (1994), pp. 4647 et seq., a drive principle making use of a magnetic moment. According to this principle, the movable element of a torsional actuator has laterally applied thereto coil-shaped conducting tracks so that a magnetic torque which can be used for driving will be generated in response to a flow of current in the magnetic field. This drive principle avoids the limitation of the amplitude caused by the geometry of the electrodes. The torque that can be realized by the magnetic moment is, however, only low so that even in the case of resonance only amplitudes of less than 3° are achieved. In addition, the set-up is comparatively complicated and expensive due to the use of a separately manufactured permanent magnet.
SUMMARY OF THE INVENTION
It is the object of the present invention to provide a micromechanical component with an oscillating body which, making use of low voltages, permits a large deflection of the oscillating body out of the chip plane.
This object is achieved by a micromechanical component comprising a frame layer and an oscillating body which, with the aid of a suspension means, is supported in an opening penetrating the frame layer, in such a way that the oscillating body is adapted to be pivoted about an axis of oscillation vertically to the frame layer plane. At least one oscillating-body lateral surface, which extends substantially at right angles to the frame layer plane, is arranged in relation to at least one inner lateral surface of the opening in such a way that a capacitance formed therebetween is varied by an oscillation of the oscillating body in such a way that an oscillation of the oscillating body about the axis of oscillation can be generated by periodically varying a voltage applied between the frame layer and the oscillating body. In addition, a supporting substrate for holding the frame layer is provided, the supporting substrate being implemented such that, in comparison with the influen
Duerr Peter
Kueck Heinz
Schenk Harald
Fraunhofer-Gesellschaft zur Foerderung der Angewandten
Glen Patent Group
Glenn Michael A.
Moller Richard A.
LandOfFree
Micromechanical component comprising an oscillating body does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Micromechanical component comprising an oscillating body, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Micromechanical component comprising an oscillating body will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3037791