Single-crystal – oriented-crystal – and epitaxy growth processes; – Processes of growth from liquid or supercritical state – Having growth from a solution comprising a solvent which is...
Reexamination Certificate
2007-12-11
2007-12-11
Kunemund, Robert (Department: 1722)
Single-crystal, oriented-crystal, and epitaxy growth processes;
Processes of growth from liquid or supercritical state
Having growth from a solution comprising a solvent which is...
C117S069000, C117S070000, C422S245100
Reexamination Certificate
active
10265473
ABSTRACT:
A static fluid and a second fluid are placed into contact along a microfluidic free interface and allowed to mix by diffusion without convective flow across the interface. In accordance with one embodiment of the present invention, the fluids are static and initially positioned on either side of a closed valve structure in a microfluidic channel having a width that is tightly constrained in at least one dimension. The valve is then opened, and no-slip layers at the sides of the microfluidic channel suppress convective mixing between the two fluids along the resulting interface. Applications for microfluidic free interfaces in accordance with embodiments of the present invention include, but are not limited to, protein crystallization studies, protein solubility studies, determination of properties of fluidics systems, and a variety of biological assays such as diffusive immunoassays, substrate turnover assays, and competitive binding assays.
REFERENCES:
patent: 3570515 (1971-03-01), Kinner
patent: 3747628 (1973-07-01), Holster et al.
patent: 4046159 (1977-09-01), Pegourie
patent: 4119368 (1978-10-01), Yamakazi
patent: 4153855 (1979-05-01), Feingold
patent: 4245673 (1981-01-01), Bouteille et al.
patent: 4434704 (1984-03-01), Surjaatmadja
patent: 4898582 (1990-02-01), Faste
patent: 4948564 (1990-08-01), Lyman et al.
patent: 4992312 (1991-02-01), Frisch
patent: 5085562 (1992-02-01), Van Lintel
patent: 5088515 (1992-02-01), Kamen
patent: 5096388 (1992-03-01), Weinberg
patent: 5126115 (1992-06-01), Fujita et al.
patent: 5164558 (1992-11-01), Huff et al.
patent: 5171132 (1992-12-01), Miyazaki
patent: 5224843 (1993-07-01), Van Lintel
patent: 5259737 (1993-11-01), Kamisuki et al.
patent: 5265327 (1993-11-01), Faris et al.
patent: 5290240 (1994-03-01), Horres, Jr.
patent: 5336062 (1994-08-01), Richter
patent: 5346372 (1994-09-01), Naruse et al.
patent: 5375979 (1994-12-01), Trah
patent: 5376252 (1994-12-01), Ekstrom
patent: 5400741 (1995-03-01), DeTitta et al.
patent: 5423287 (1995-06-01), Usami et al.
patent: 5529465 (1996-06-01), Zengerle et al.
patent: 5593130 (1997-01-01), Hansson et al.
patent: 5637469 (1997-06-01), Wilding et al.
patent: 5642015 (1997-06-01), Whitehead et al.
patent: 5659171 (1997-08-01), Young et al.
patent: 5660370 (1997-08-01), Webster
patent: 5681024 (1997-10-01), Lisec et al.
patent: 5705018 (1998-01-01), Hartley
patent: 5759014 (1998-06-01), Van Lintel
patent: 5775371 (1998-07-01), Pan et al.
patent: 5788468 (1998-08-01), Dewa et al.
patent: 5836750 (1998-11-01), Cabuz
patent: 5842787 (1998-12-01), Kopf-Sill et al.
patent: 5875817 (1999-03-01), Carter
patent: 5876187 (1999-03-01), Forster et al.
patent: 5876675 (1999-03-01), Kennedy et al.
patent: 5885470 (1999-03-01), Parce et al.
patent: 5932100 (1999-08-01), Yager et al.
patent: 5932799 (1999-08-01), Moles
patent: 5942443 (1999-08-01), Parce et al.
patent: 5958694 (1999-09-01), Nikiforov
patent: 6007309 (1999-12-01), Hartley
patent: 6043080 (2000-03-01), Lipshutz et al.
patent: 6123769 (2000-09-01), Sanjoh
patent: 6155282 (2000-12-01), Zachary et al.
patent: 6165694 (2000-12-01), Liu
patent: 6174365 (2001-01-01), Sanjoh
patent: 6174675 (2001-01-01), Chow et al.
patent: 6296673 (2001-10-01), Santarsiero et al.
patent: 6345502 (2002-02-01), Tai et al.
patent: 6409832 (2002-06-01), Weigl et al.
patent: 6767706 (2004-07-01), Quake et al.
patent: 2001/0027745 (2001-10-01), Weigl et al.
patent: 2001/0041357 (2001-11-01), Fouillet et al.
patent: 2002/0037499 (2002-03-01), Quake et al.
patent: 2002/0145231 (2002-10-01), Hansen et al.
patent: 2003/0061687 (2003-04-01), Hansen et al.
patent: 2004/0115731 (2004-06-01), Hansen et al.
patent: 2005/0062196 (2005-03-01), Hansen et al.
patent: 2005/0205005 (2005-09-01), Hansen et al.
patent: 2005/0229839 (2005-10-01), Quake et al.
patent: 0 592 094 (1994-04-01), None
patent: 0 703 364 (1996-03-01), None
patent: 0 706 004 (1996-04-01), None
patent: 0 779 436 (1997-06-01), None
patent: 0 829 360 (1998-03-01), None
patent: 0 845 603 (1998-06-01), None
patent: 0 999 055 (2000-05-01), None
patent: 2 155 152 (1985-09-01), None
patent: 2 308 460 (1997-06-01), None
patent: WO 98/07069 (1998-02-01), None
patent: WO 99/00655 (1999-01-01), None
patent: WO 99/04361 (1999-01-01), None
patent: WO 99/17093 (1999-04-01), None
patent: WO 99/52633 (1999-10-01), None
patent: WO 00/00678 (2000-01-01), None
patent: WO 00/43748 (2000-07-01), None
patent: WO 00/60345 (2000-10-01), None
patent: WO 01/09595 (2001-02-01), None
patent: WO 01/09595 (2001-02-01), None
“Biochips,” Nature Biotechnology, vol. 18, Supplement 2000, pp. IT43-IT44, 2000.
“Chapter 9: Microfluidic Devices,” Micromachined Transducers Sourcebook, pp. 779-882, 1998.
“Electro Microfluidic Dual In-Line Package (EMDIP),” Sandia National Laboratories, 2 pages, no date.
“Last Chance For Micromachines,” The Economist Technology Quarterly, printed from website http://www.economist.com/science/displayStory.cfm?Story—ID=442930 on Jan. 25, 2001, 8 pages, Dec. 7, 2000.
Abola, Enrique et al., “Automation Of X-Ray Crystallography,” Nature Structural Biology, Structural Genomics Supplement, pp. 973-977, Nov. 2000.
Ahn, Chong H. et al., “Fluid Micropumps Based On Rotary Magnetic Actuators,” Proceedings of 1995 IEEE Micro Electro Mechanical Systems Workshop (MEMS '95), Amsterdam, Netherlands, pp. 408-412, Jan. 29-Feb. 2, 1995.
Andersen, Gregers Rom et al., “A Spreadsheet Approach To Automated Protein Crystallization,” Journal of Applied Crystallography, vol. 29, pp. 236-240, 1996.
Anderson, Rolfe C. et al., “Microfluidic Biochemical Analysis System,” Transducers '97, 1997 International Conference on Solid-State Sensors and Actuators, Chicago, Illinois, pp. 477-480, Jun. 16-19, 1997.
Angell, James B. et al., “Silicon Micromechanical Devices,” Scientific American, pp. cover, 44-55, Apr. 1983.
Armani, Deniz et al., “Re-Configurable Fluid Circuits By PDMS Elastomer Micromachining,” IEEE Int. Conf. Micro Electro Mech. Syst. Tech. Digest, vol. 12, pp. 222-227, 1999.
Ballantyne, J. P. et al., “Selective Area Metallization By Electron-Beam Controlled Direct Metallic Deposition,” J. Vac. Sci. Technol., vol. 10, No. 6, pp. 1094-1097, Nov. 1973.
Belgrader, Phillip et al., “Rapid Pathogen Detection Using A Microchip PCR Array Instrument,” Clinical Chemistry, vol. 44, No. 10, pp. 2191-2194, 1998.
Benard, W. L. et al., “A Titanium-Nickel Shape-Memory Alloy Actuated Micropump,” Transducers '97, 1997 International Conference on Solid-State Sensors and Actuators, Chicago, Illinois, pp. 361-364, Jun. 16-19, 1997.
Berry, Michael B., “Protein Crystallization: Theory And Practice,” Excerpts from Doctoral Thesis, 36 pages, Sep. 17, 1995.
Bloomstein, T. M. et al., “Laser-Chemical Three-Dimensional Writing For Microelectromechanics And Application To Standard-Cell Microfluidics,” J. Vac. Sci. Technol. B, vol. 10, No. 6, 2671-2674, Nov. 1992.
Bousse, Luc et al., “Electrokinetically Controlled Microfluidic Analysis Systems,” Annu. Rev. Biophys. Biomol. Struct., vol. 29, pp. 155-181, 2000.
Brechtel, R. et al., “Control Of The Electroosmotic Flow By Metal-Salt-Containing Buffers,” Journal of Chromatography A, vol. 716, pp. 97-105, 1995.
Brush, Michael, “Automated Laboratories,” The Scientist, vol. 13, No. 4, 10 pages, Feb. 15, 1999.
Bryzek, Janusz et al., “Micromachines On The March”, IEEE Spectrum, vol. 31, No. 5, pp. 20-31, May 1994.
Buchaillot, Lionel et al., “Silicon Nitride Thin Films Young's Modulus Determination By An Optical Non Destructive Method,” Jpn. J. Appl. Phys., vol. 36, Part 2, No. 6B, pp. L794-L797, Jun. 15, 1997.
Burbaum, Jonathan J. et al., “New Technologies For High-Throughput Screening,” Current Opinion in Chemical Biology, vol. 1, pp. 72-78, 1997.
Calkins, Kathryn, “Mycometrix: Rubber Chips,” BioCentury, 2 pages, Oct. 16, 2000.
Chayen, N
Berger James M.
Hansen Carl L.
Quake Stephen R.
California Institute of Technology
Kunemund Robert
Townsend and Townsend / and Crew LLP
LandOfFree
Microfluidic free interface diffusion techniques does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Microfluidic free interface diffusion techniques, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Microfluidic free interface diffusion techniques will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3844387