Microfluidic devices for introducing and dispensing fluids...

Chemical apparatus and process disinfecting – deodorizing – preser – Control element responsive to a sensed operating condition

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C422S050000, C422S051000, C422S051000, C422S068100, C422S081000, C422S082000, C422S082050, C422S105000, C422S105000, C422S105000, C422S105000, C436S043000, C436S053000, C436S054000, C436S063000, C251S129010, C251S213000, C137S001000, C137S014000, C204S193000, C204S194000, C435S283100, C435S286400, C435S286500, C435S286600, C435S287100, C435S287300

Reexamination Certificate

active

06951632

ABSTRACT:
The present invention provides microfluidic devices, systems and methods for using the same, which facilitate the introduction of fluid to and from a microfluidic channel located within the microfluidic devices.

REFERENCES:
patent: 3570515 (1971-03-01), Kinner
patent: 3747628 (1973-07-01), Holster et al.
patent: 4046159 (1977-09-01), Pegourie
patent: 4119368 (1978-10-01), Yamakazi
patent: 4153855 (1979-05-01), Feingold
patent: 4245673 (1981-01-01), Bouteille et al.
patent: 4434704 (1984-03-01), Surjaatmadja
patent: 4898582 (1990-02-01), Faste
patent: 5085562 (1992-02-01), van Lintel
patent: 5088515 (1992-02-01), Kamen
patent: 5096388 (1992-03-01), Weinberg
patent: 5126115 (1992-06-01), Fujita et al.
patent: 5164558 (1992-11-01), Huff et al.
patent: 5171132 (1992-12-01), Miyazaki
patent: 5178190 (1993-01-01), Mettner
patent: 5224843 (1993-07-01), Van Lintel
patent: 5259737 (1993-11-01), Kamisuki et al.
patent: 5265327 (1993-11-01), Faris et al.
patent: 5290240 (1994-03-01), Horres, Jr.
patent: 5304487 (1994-04-01), Wilding et al.
patent: 5336062 (1994-08-01), Richter
patent: 5346372 (1994-09-01), Naruse et al.
patent: 5375979 (1994-12-01), Trah
patent: 5376252 (1994-12-01), Ekstrom
patent: 5400741 (1995-03-01), DeTitta et al.
patent: 5423287 (1995-06-01), Usami et al.
patent: 5529465 (1996-06-01), Zengerle et al.
patent: 5593130 (1997-01-01), Hansson et al.
patent: 5642015 (1997-06-01), Whitehead et al.
patent: 5659171 (1997-08-01), Young et al.
patent: 5660370 (1997-08-01), Webster
patent: 5681024 (1997-10-01), Lisec et al.
patent: 5705018 (1998-01-01), Hartley
patent: 5743960 (1998-04-01), Tisone
patent: 5759014 (1998-06-01), Van Lintel
patent: 5775371 (1998-07-01), Pan et al.
patent: 5836750 (1998-11-01), Cabuz
patent: 5842787 (1998-12-01), Kopf-Sill et al.
patent: 5846396 (1998-12-01), Zanzucchi et al.
patent: 5872010 (1999-02-01), Karger et al.
patent: 5875817 (1999-03-01), Carter
patent: 5876187 (1999-03-01), Forster et al.
patent: 5879632 (1999-03-01), Demers
patent: 5885470 (1999-03-01), Parce et al.
patent: 5932799 (1999-08-01), Moles
patent: 5942443 (1999-08-01), Parce et al.
patent: 6007309 (1999-12-01), Hartley
patent: 6033544 (2000-03-01), Demers et al.
patent: 6033546 (2000-03-01), Ramsey
patent: 6043080 (2000-03-01), Lipshutz et al.
patent: 6068751 (2000-05-01), Neukermans
patent: 6086825 (2000-07-01), Sundberg et al.
patent: 6090251 (2000-07-01), Sundberg et al.
patent: 6117396 (2000-09-01), Demers
patent: 6123769 (2000-09-01), Sanjoh
patent: 6155282 (2000-12-01), Zachary et al.
patent: 6174365 (2001-01-01), Sanjoh
patent: 6176962 (2001-01-01), Soane et al.
patent: 6296673 (2001-10-01), Santarsiero et al.
patent: 6391622 (2002-05-01), Knapp et al.
patent: 6408878 (2002-06-01), Unger et al.
patent: 6409832 (2002-06-01), Weigl et al.
patent: 6720710 (2004-04-01), Wenzel et al.
patent: 0 592 094 (1994-04-01), None
patent: 0 703 364 (1996-03-01), None
patent: 0 706 004 (1996-04-01), None
patent: 0 779 436 (1997-06-01), None
patent: 0 829 360 (1998-03-01), None
patent: 0 845 603 (1998-06-01), None
patent: 0 999 055 (2000-05-01), None
patent: 2 155 152 (1985-09-01), None
patent: 2 308 460 (1997-06-01), None
patent: WO 98/07069 (1998-02-01), None
patent: WO 99/17093 (1999-04-01), None
patent: WO 00/60345 (2000-10-01), None
patent: WO 02/060582 (2002-08-01), None
Ahn et al., “Fluid Micropumps Based on Rotary Magnetic Actuators,” Proceedings of 1995 IEEE Micro Electro Mechanical Systems Workshop (MEMS '95), held in Amsterdam, Netherlands on Jan. 29-Feb. 2, 1995, pp. 408-412.
Benard et al., “A Titanium-Nickel Shape-Memory Alloy Actuated Micropump,” Proceedings of Transducers '97, 1997 International Conference on Solid-State Sensors and Actuators, held in Chicago, IL., Jun. 16-19, 1997, 1:361-364 (1997).
Brechtel et al.; “Control of the electrosmotic flow by metal-salt-containing buffers”, J Chromatography A, 1995, pp. 97-105, vol. 716.
Bryzek et al.; “Micromachines on the March”, IEEE Spectrum, 1994, pp. 20-31, vol. 31, No. 5.
Buchaillot et al.; “Silicon nitride thin films Young's modulus determination by an optical non-destructive method”, Jpn. J Appl Phys, 1995, pp. L794-L797, vol. 36, No. 2:6B.
Chiu et al.; “Patterned Deposition of Cells and Proteins onto Surfaces by Using Three-Dimensional Microfluidic Systems”, Proc. Natl. Acad. Sci., 2000, pp. 2408-2413, vol. 97, No. 6.
Chou et al. “A microfabricated device for sizing and sorting DNA molecules”, Applied Physical Sciences, Biophysics, Proc. Natl. Acad. Sci., 1999, pp. 11-13, vol. 96, U.S.A.
Delamarche et al.; “Patterned delivery of immunoglobulins to surfaces using microfluidic networks”, Science, 1997, pp. 779-781, vol. 276.
Duffy et al. “Patterning Electroluminescence Materials with Feature Sizes as Small as 5μm Using Elastomeric Membranes as Masks for Dry Lift-Off”, Advanced Materials, 1999, pp. 546-552, vol. 11, No. 7.
Duffy et al. “Rapid Prototyping of Microfluidic Switches in Poly(dimethylsiloxane) and Their Actuation by Electro-Osmotic Flow” Journal of Microeng, 1999, pp. 211-217, vol. 9.
Duffy et al. “Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane)”, Analytical Chemistry, 1998, pp. 4974-4984, vol. 70, No. 23.
Effenhauser et al.; “Integrated capillary electrophoresis on flexible silicone microdevices: Analysis of DNA restriction fragments and detection of single DNA molecules on microchips”, Anal. Chem, 1997, pp. 3451-3457, vol. 69.
Effenhauser et al.; “Integrated chip-based capillary electrophoresis”, Electrophoresis, 1997, pp. 2203-2213, vol. 18.
Fahrenberg et al. “A microvalve system fabricated by thermoplastic molding”, J Micromech Microeng, 1995, pp. 169-171, vol. 5.
Fu et al.; “A microfabricated fluorescence-activated cell-sorter”, Nature Biotechnology, 1999, pp. 1109-1111, vol. 17.
Gass et al., “Integrated flow-regulated silicon micropump,” Sensors and Actuators A Physical, 1994, p. 335-338, vol. 43.
Gerlach, T., “Pumping Gases by a Silicon Micro Pump with Dynamic Passive Valves,” Proceedings of Transducers '97, 1997 International Conference on Solid-State Sensors and Actuators, held in Chicago, Il., Jun. 16-19, 1997, pp. 357-360, vol. 1.
Goll et al., “Microvalves with bistable buckled polymer diaphragms,” J. Micromech. Microeng., 1996, pp. 77-79, vol. 6.
Gravesen et al.; “Microfluids—A Review”, Journal Micromech Microeng, 1993, pp. 168-192, vol. 3.
Harrison et al., “Micromachining a Miniaturized Capillary Electrophoresis-Based Chemical Analysis System on a Chip,” Science, 1993, pp. 895-897, vol. 261.
Hornbeck et al., “Bistable Deformable Mirror Device,” Spatial Light Modulators and Applications 1988 Technical Digest Series, vol. 8, Postconference Edition, Summaries of papers presented at the Spatial Light Modulators and Applications Topical Meeting, Jun. 15-17, 1988, Optical Society of America, pp. 107-110.
Hosokawa et al., “Handling of Picoliter Liquid Samples in a Poly(dimethylsiloxane)-Based Microfluid Device,” Anal. Chem., 1999, 71(20):4781-4785.
Ikuta et al., “Three dimensional micro integrated fluid systems (MIFS) fabricated by stereo lithography,” IEEE Kyushu Institute of Technology, 1994, pp. 1-6.
Jacobson et al., “High-speed separations on a microchip,” Anal. Chem., 1994, 66(7):1114-1118.
Jacobson et al., “Microfluidic Devices for Electrokinetically Driven Parallel and Serial Mixing,” Anal. Chem., 1999, 71(20):4455-4459.
Jerman, H., “Electrically-Activated, Normally-Closed Diaphragm Valves,” Proceedings of Transducers '91, 1991 International Conference on Solid-State Sensors and Actuators, pp. 1045-1048 (1991).
Jung et al., “Chemical and Physical Interactions at Metal/Self-Assembled Organic Monolayer Interfaces,” Critical Reviews in Solid State and Material Sciences, 1994, pp. 2-10, vol. 1

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Microfluidic devices for introducing and dispensing fluids... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Microfluidic devices for introducing and dispensing fluids..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Microfluidic devices for introducing and dispensing fluids... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3491224

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.