Fluid handling – Processes – Cleaning – repairing – or assembling
Reexamination Certificate
2003-06-04
2004-08-03
Chambers, A. Michael (Department: 3753)
Fluid handling
Processes
Cleaning, repairing, or assembling
C137S013000, C137S833000, C137S334000, C204S451000, C204S601000
Reexamination Certificate
active
06769444
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to: the field of microreactors and more particularly to a microfluidic device and a method of manufacturing such microfluidic devices.
2. Technical Background
Microfluidic devices are structures familiar to those skilled in the art, structures for which numerous applications have already been described, in particular in references such as: Microreaction Technology, 3
rd
International Conference on Microreaction Technology; edited by W. Ehrfeld, published by Springer-Verlag, Berlin (2000); and Micro-total Analysis Systems 2000, edited by A. Van Den Berg, W. Olthius, and P. Bergveld, published by Kluwer Ac Publishers (2000). Within such structures, in volumes that are small (having a characteristic dimension that generally lies in the range of 10 micrometers (&mgr;m) to 1000 &mgr;m), fluids are directed and/or mixed together and/or caused to react.
Such devices known in the art include, microfluidic devices made of various types of material, and in particular of polymers, of silicon, or of metals. The shortcomings encountered with those materials are numerous. For example, devices made of polymers cannot withstand temperatures of more than 200° C. to 300° C. over a prolonged period. Moreover, it is often difficult to control surface states effectively within such structures.
Silicon devices are expensive, incompatible with certain biological fluids, and the semiconductive nature of silicon gives rise to problems with implementing certain pumping techniques, such as electro-hydrodynamic pumping and electro-osmotic pumping.
Devices made of metal are liable to corrode, and in like manner they are typically not compatible with certain biological fluids.
It has therefore been found desirable, in numerous contexts, to have fluidic microstructures made of glass, glass ceramic, or ceramic. Those materials are particularly appreciated for their insulating nature (thus, U.S. Pat. No. 6,210,986 describes the benefit of having insulating structures available when the fluid is moved by electro-osmosis or by electrokinetics), for their resistance or even inertness in the face of chemical attack, for their transparency, for their surface homogeneity, and for the ease with which their surfaces can be modified chemically. Microfluidic devices made of glass have been obtained by chemical or physical etching. Those etching technologies give rise to hollows in a glass substrate and they are not entirely satisfactory to implement. Isotropic chemical etching does not enable significant aspect ratios to be obtained, while physical etching is difficult to implement, in particular because of its high cost and limited production capacity. To close such open structures, the technique most often employed is ionic attachment. That technique is expensive, and difficult to implement insofar as it is highly sensitive to dust and insofar as the surface of each layer that is to come into contact must be as flat as possible in order to provide high quality sealing.
Microfluidic devices made of ceramic, as described in European patent application No. EP-A-0 870 541, generally are obtained by ceramizing a stack of ceramizable layers (green mixture of ceramic powders and an organic binder). In the stack, there is no support layer, and within each ceramizable layer the empty volume remains limited.
In another context, that of screens and digital displays, the following techniques have been described. Generally speaking, glass forming operations to generate rectilinear parallel ribs on a flat support are known in the art. Unlike the method of the present invention, such forming steps are not performed in a vacuum. Known techniques are well represented in U.S. Pat. No. 5,853,446.
Operations for closing open plane structures having rectilinear parallel ribs, such as those obtained by the above-mentioned forming operations are also known. In accordance with such forming operations, a fine layer of glass paste is placed on these ribs, which are not too far apart. This is described in Japanese application No. JP-A-12 187 028. The technique incorporating the fine layer of glass cannot in any way be considered to be equivalent to the support substrate of devices made in accordance with the present invention.
What is needed therefore, but presently unavailable in the art, is a microfluidic device and method of manufacturing such a microfluidic device that overcomes these and other shortcomings associated with the use and manufacture of microfluidic devices known in the art. Such microfluidic devices should be capable of obtaining high aspect ratios, and should be well suited for use as microreactors for the chemical, pharmaceutical, and biotechnology industries. The method of manufacturing such microfluidic devices should be compatible with low cost production while at the same time provide advantageous yields. It is to the provision of such a microfluidic device and method of manufacturing such microfluidic devices that the present invention is primarily directed.
SUMMARY OF THE INVENTION
One aspect of the present invention relates to a microfluidic device. The microfluidic device includes a first assembly including a microstructure and a first substrate, wherein the microstructure is constructed and arranged on the substrate under vacuum. A second assembly including a second substrate is positioned on the microstructure after the first assembly is presintered and adhered thereto by heat treatment to form a one-piece microstructure defining at least one recess between the first and second substrates.
In another aspect the present invention is directed to a method of manufacturing a microfluidic device. The method includes the steps of disposing a mixture including an organic binder and a precursor material between a mold and a first substrate, heating the mixture under vacuum at a temperature sufficient to thermoform the mixture onto the first substrate and in the shape of the mold, and presintering the thermoformed mixture in the substrate to form a consolidated first assembly. The first assembly is assembled with a second assembly including a second substrate such that the presintered thermoformed mixture is positioned between the first presintered substrate and the second assembly. The assembled first assembly and second assembly is heated to a temperature sufficient to form a one-piece microstructure defining at least one recess between the first and second substrates.
The microfluidic device and method of manufacturing such microfluidic devices results in a number of advantages over other microfluidic devices and manufacturing techniques known in the art. For example, the vacuum-forming aspect of the present invention is a technique that is compatible with low-cost production and significant yield. In addition, vacuum-forming enables high aspect ratios without the use of expensive techniques such as physical etching.
Additional features and advantages of the invention will be set forth in the detailed description which follows and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the invention as described herein.
It is to be understood that both the foregoing general description and the following detailed description are merely exemplary of the invention, and are intended to provide an overview or framework for understanding the nature and character of the invention as it is claimed. The accompanying drawings are included to provide further understanding of the invention, illustrate various embodiments of the invention, and together with the description serve to explain the principles and operation of the invention.
REFERENCES:
patent: 3587607 (1971-06-01), Konig et al.
patent: 4110140 (1978-08-01), Laakaniemi et al.
patent: 5853446 (1998-12-01), Carre et al.
patent: 5904424 (1999-05-01), Schwesinger et al.
patent: 6210986 (2001-04-01), Arnold et al.
patent: 2002/0001695 (2002-01-01), Tajima et al.
patent: 0870541 (1998-10-01), None
patent: WO91/16966 (1991-11-01
Guzman Guillaume
Themont Jean-Pierre
Bean Gregory V.
Chambers A. Michael
Corning Incorporated
LandOfFree
Microfluidic device and manufacture thereof does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Microfluidic device and manufacture thereof, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Microfluidic device and manufacture thereof will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3300279