Microfabricated elastomeric valve and pump systems

Fluid handling – Flow affected by fluid contact – energy field or coanda effect – Structure of body of device

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C137S803000, C137S807000, C137S824000, C137S565160

Reexamination Certificate

active

11056451

ABSTRACT:
A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.

REFERENCES:
patent: 3495608 (1970-02-01), O'Keefe
patent: 3570515 (1971-03-01), Kinner
patent: 3747628 (1973-07-01), Holster et al.
patent: 4046159 (1977-09-01), Pegourie
patent: 4119368 (1978-10-01), Yamazaki
patent: 4153855 (1979-05-01), Feingold
patent: 4245873 (1981-01-01), Boutoillo et al.
patent: 4434704 (1984-03-01), Surjaatmadja
patent: 4848722 (1989-07-01), Webster
patent: 4898582 (1990-02-01), Faste
patent: 4992312 (1991-02-01), Frisch
patent: 5085582 (1992-02-01), Van Lintel
patent: 5088515 (1992-02-01), Kamen
patent: 5096388 (1992-03-01), Weinberg
patent: 5126115 (1992-06-01), Fujita et al.
patent: 5164558 (1992-11-01), Huff et al.
patent: 5171132 (1992-12-01), Miyazaki
patent: 5224843 (1993-07-01), van Lintel
patent: 5259737 (1993-11-01), Kamisuki et al.
patent: 5265327 (1993-11-01), Faris et al.
patent: 5290240 (1994-03-01), Horres, Jr.
patent: 5336062 (1994-08-01), Richter
patent: 5346372 (1994-09-01), Naruse et al.
patent: 5375979 (1994-12-01), Trah
patent: 5376252 (1994-12-01), Ekstrom
patent: 5400741 (1995-03-01), DeTitta et al.
patent: 5423287 (1995-06-01), Usami et al.
patent: 5529465 (1996-06-01), Zengerle et al.
patent: 5593130 (1997-01-01), Hansson et al.
patent: 5642015 (1997-06-01), Whitehead et al.
patent: 5659171 (1997-08-01), Young et al.
patent: 5660370 (1997-08-01), Webster
patent: 5681024 (1997-10-01), Lisec et al.
patent: 5705018 (1998-01-01), Hartley
patent: 5759014 (1998-06-01), Van Lintel
patent: 5775371 (1998-07-01), Pan et al.
patent: 5788468 (1998-08-01), Dewa et al.
patent: 5836750 (1998-11-01), Cabuz
patent: 5842787 (1998-12-01), Kopf-Sill et al.
patent: 5875817 (1999-03-01), Carter
patent: 5876187 (1999-03-01), Afromowitz
patent: 5932799 (1999-08-01), Moles
patent: 5942443 (1999-08-01), Parce et al.
patent: 6007309 (1999-12-01), Hartley
patent: 6043080 (2000-03-01), Lipshutz et al.
patent: 6123769 (2000-09-01), Sanjoh
patent: 6155282 (2000-12-01), Zachary et al.
patent: 6174365 (2001-01-01), Sanjoh
patent: 6296673 (2001-10-01), Santarsiero et al.
patent: 6345502 (2002-02-01), Tai et al.
patent: 6409832 (2002-06-01), Weigl et al.
patent: 6767706 (2004-07-01), Quake et al.
patent: 6793753 (2004-09-01), Unger et al.
patent: 6899137 (2005-05-01), Unger et al.
patent: 6929030 (2005-08-01), Unger et al.
patent: 2001/0027745 (2001-10-01), Weigl et al.
patent: 2001/0033796 (2001-10-01), Unger et al.
patent: 2002/0029814 (2002-03-01), Unger et al.
patent: 2002/0037499 (2002-03-01), Quake et al.
patent: 2002/0144738 (2002-10-01), Unger et al.
patent: 2003/0019833 (2003-01-01), Unger et al.
patent: 0 592 094 (1994-04-01), None
patent: 0 703 364 (1996-03-01), None
patent: 0 829 360 (1996-03-01), None
patent: 0 706 004 (1996-04-01), None
patent: 0 779 436 (1997-06-01), None
patent: 0 845 603 (1998-06-01), None
patent: 0 999 055 (2000-05-01), None
patent: 2 155 152 (1985-09-01), None
patent: 2 306 460 (1997-06-01), None
patent: WO 98/07069 (1996-02-01), None
patent: WO 99/00655 (1999-01-01), None
patent: WO 99/04361 (1999-01-01), None
patent: WO 99/17093 (1999-04-01), None
patent: WO 99/52633 (1999-10-01), None
patent: WO 00/00678 (2000-01-01), None
patent: WO 00/43748 (2000-07-01), None
patent: WO 00/60345 (2000-10-01), None
patent: WO 01/09595 (2001-02-01), None
patent: WO 01/09595 (2001-02-01), None
“Biochips,” Nature Biotechnology, vol. 18, Supplement 2000, pp. IT43-IT44, 2000.
“Chapter 9: Microfluidic Devices,” Micromachined Transducers Sourcebook, pp. 779-882, 1998.
“Electro Microfluidic Dual In-Line Package (EMDIP),” Sandia National Laboratories, 2 pages, no date.
Anderson, Rolfe C. et al., “Microfluidic Biochemical Analysis System,” Transducers '97, 1997 International Conference on Solid-State Sensors and Actuators, Chicago, Illinois, pp. 477-480, Jun. 16-19, 1997.
Angell, James B. et al., “Silicon Micromechanical Devices,” Scientific American, pp. cover, 44-55, Apr. 1983.
Armani, Deniz et al., “Re-Configurable Fluid Circuits By PDMS Elastomer Micromachining,” IEEE Int. Conf. Micro Electro Mech. Syst. Tech. Digest, vol. 12, pp. 222-227, 1999.
Ballantyne, J. P. et al., “Selective Area Metallization By Electron-Beam Controlled Direct Metallic Deposition,” J. Vac. Sci. Technol., vol. 10, No. 6, pp. 1094-1097, Nov. 1973.
Bloomstein, T. M. et al., “Laser-Chemical Three-Dimensional Writing For Microelectromechanics And Application To Standard-Cell Microfluidics,” J. Vac. Sci. Technol. B, vol. 10, No. 6, pp. 2671-2674, Nov. 1992.
Bousse, Luc et al., “Electrokinetically Controlled Microfluidic Analysis Systems,” Annu. Rev. Biophys. Biomol. Struct., vol. 29, pp. 155-181, 2000.
Chou, Hou-Pu et al., “Integrated Elastomer Fluidic Lab-On-A-Chip-Surface Patterning And DNA Diagnostics,” Proceedings of the Solid State Actuator and Sensor Workshop, Hilton Head, South Carolina, 4 pages, 2000.
Chou, Hou-Pu et al., “Multiple Disease Diagnostics On A Single Chip,” Biophysics Lab, Caltech, pp. 1-4, Mar. 1, 2000.
Fettinger, J. C. et al., “Stacked Modules For Micro Flow Systems In Chemical Analysis: Concept And Studies Using An Enlarged Model,” Sensors and Actuators B, vol. 17, pp. 19-25, 1993.
Folch, A. et al., “Molding Of Deep Polydimethylslloxane Microstructures For Microfluidics And Biological Applications,” Journal of Biomechanical Engineering, vol. 121, pp. 28-34, Feb. 1999.
Galambos, Paul et al., “Electrical And Fluidic Packaging Of Surface Micromachined Elecro-Microfluidic Devices,” 8 pages, no date.
Greene, Chana, “Characterizing The Properties Of PDMS,” pp. 1-11, Summer 2000.
Guérin, L. J. et al., “Simple And Low Cost Fabrication Of Embedded Micro-Channels By Using A New Thick-Film Photoplastic,” Transducers '97 International Conference on Solid-State Sensors and Actuators, Chicago, Illinois, pp. 1419-1422, Jun. 18-19, 1997.
Hicks, Jennifer, “Genetics And Drug Discovery Dominate Microarray Research,” R&D Magazine, pp. 28-33, Feb. 1999.
Jo, Byung-Ho et al., “Fabrication Of Three-Dimensional Microfluidic Systems By Stacking Molded Polydimethylsiloxane (PDMS) Layers” SPIE, vol. 3877, pp. 222-229, Sep. 1999.
Jo, Byung-Ho et al., “Three-Dimensional Micro-Channel Fabrication In Polydimethylsiloxane (PDMS) Elastomer,” Journal of Microelectromechanical Systems, vol. 9, No. 1, pp. 76-81, Mar. 2000.
Kagan, C. R., “Organic-Inorganic Hybrid Materials As Semiconducting Channels In Thin-Film Field-Effect Transistors,” Science, vol. 286, pp. 945-947, Oct. 29, 1999.
Kapur, Ravi et al., “Fabrication And Selective Surface Modification Of 3-Dimensionally Textured Biomedical Polymers From Etched Silicon Substrates,” Journal of Biomedical Materials Research, vol. 33, pp. 205-216, 1996.
Khoo, Melvin et al., “A Novel Micromachined Magnetic Membrane Microfluid Pump,” pp. 1-4, no date.
Kim, Enoch et al., “Polymer Microstructures Formed By Moulding In Capillaries,” Nature, vol. 376, pp. 581-584, Aug. 17, 1995.
Kirk-Othmer, “Concise Encyclopedia of

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Microfabricated elastomeric valve and pump systems does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Microfabricated elastomeric valve and pump systems, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Microfabricated elastomeric valve and pump systems will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3818146

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.