Microfabricated acoustic transducer with suppressed...

Communications – electrical: acoustic wave systems and devices – Signal transducers – Underwater type

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C367S162000, C367S163000, C367S174000, C367S181000

Reexamination Certificate

active

06714484

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to the field of acoustic transducers. More specifically, the present invention relates to capacitive microfabricated ultrasonic transducers.
2. Description of the Related Art
An acoustic transducer is an electronic device used to emit and receive sound waves. Acoustic transducers are used in medical imaging, non-destructive evaluation, and other applications. Ultrasonic transducers are acoustic transducers that operate at higher frequencies. Ultrasonic transducers typically operate at frequencies exceeding 20 kHz.
The most common forms of ultrasonic transducers are piezoelectric transducers. Recently, a different type of ultrasonic transducer, capacitive microfabricated transducers, have been described and fabricated. Such transducers are described by Haller et al. in U.S. Pat. No. 5,619,476 entitled “Electrostatic Ultrasonic Transducer,” issued Apr. 9, 1997, and Ladabaum et al. in U.S. Pat. No. 5,870,351 entitled “Broadband Microfabricated Ultrasonic Transducer and Method of Fabrication,” issued Feb. 9, 1999. These patents describe transducers capable of functioning in a gaseous environment, such as air-coupled transducers. Ladabaum et al, in U.S. Pat. No. 5,894,452 entitled, “Microfabricated Ultrasonic Immersion Transducer,” issued Apr. 13, 1999 describe an immersion transducer (a transducer capable of operating in contact with a liquid medium), and in U.S. Pat. No. 5,982,709 entitled, “Acoustic Transducer and Method of Microfabrication,” issued Nov. 9, 1999 describe improved structures and methods of microfabricating immersion transducers. The basic transduction element described by these patents is a vibrating capacitor. A substrate contains a lower electrode, a thin diaphragm is suspended over said substrate, and a metalization layer serves as an upper electrode. If a DC bias is applied across the lower and upper electrodes, an acoustic wave impinging on the diaphragm will set it in motion, and the variation of electrode separation caused by such motion results in an electrical signal. Conversely, if an AC signal is applied across the biased electrodes, an AC forcing function will set the diaphragm in motion, and this motion emits an acoustic wave in the medium of interest.
It has been realized by the present inventors that the force on the lower (substrate) electrode cannot be ignored. Even though the diaphragm is much more compliant than the substrate and thus moves much more than the substrate when an AC voltage is applied between the biased electrodes, the substrate electrode experiences the same electrical force as the diaphragm electrode. Thus, when transmitting, a microfabricated ultrasonic transducer can launch acoustic waves in the substrate as well as in the medium of interest, even though the particle motion in the substrate is smaller than the particle motion in the fluid medium of interest. Of particular concern is the situation where the substrate has mechanical properties and a geometry such that resonant modes can be excited by the force on the substrate electrode. In these cases, the acoustic activity of the substrate can undermine the performance of the transducer. One specific example is a longitudinal ringing mode that can be excited in a typical silicon substrate wafer. Since the detrimental effects on transducer performance of the forces and motion of the substrate electrode have not been previously addressed, there is the need for an ultrasonic transducer capable of operating with suppressed substrate modes.
While the suppression of modes, matching, and the damping of acoustic energy exists in piezoelectric transducers, the differences between such piezoelectric transducers and microfabricated ultrasonic transducers are so numerous that heretofore suppression of modes, matching and damping was not considered relevant to microfabricated ultrasonic transducers.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide microfabricated acoustic or ultrasonic transducer with suppressed substrate acoustic modes.
It is a further object of the present invention to provide an acoustic or ultrasonic transducer with suppressed substrate acoustic modes when the substrate is a silicon wafer containing integrated electronic circuits.
It is a further object of the present invention to provide an acoustic damping material placed on the back side of the substrate, said backing material capable of dissipating the acoustic energy in the substrate.
It is a further object of the present invention to provide a thinned substrate so that acoustic modes in the substrate can exist only at frequencies outside the band of interest.
It is a further object of the present invention to provide a specific material capable of suppressing modes in a silicon substrate.
The present invention achieves the above objects, among others, with an acoustic or ultrasonic transducer comprised of a diaphragm containing an upper electrode suspended above a substrate containing the lower electrode, a substrate that may or may not contain electronic circuits, and a backing material that absorbs acoustic energy from the substrate. Further, the substrate can be thinned to dimensions such that, even without any backing material, resonant modes are outside of the frequency band of interest.
In order to obtain a suitable backing material to dampen the acoustic energy in the substrate is twofold, certain characteristics are preferably met. First, the material should have an acoustic impedance that matches that of the substrate. This allows acoustic energy to travel from the substrate into the backing material (as opposed to getting reflected into the substrate at the substrate-backing interface). Second, the material should be lossy. This allows for the energy that enters the backing material from the substrate to be dissipated. In one preferred embodiment of the invention, a tungsten epoxy mixture is used to successfully damp the longitudinal ringing mode in a 640 &mgr;m silicon substrate by applying the material to the backside of the substrate (the side opposite the transducer diaphragms).


REFERENCES:
patent: 4494091 (1985-01-01), Goll
patent: 4528652 (1985-07-01), Horner et al.
patent: 5287331 (1994-02-01), Schindel et al.
patent: 5619476 (1997-04-01), Haller et al.
patent: 5730113 (1998-03-01), Wildes et al.
patent: 5870351 (1999-02-01), Ladabaum et al.
patent: 5877580 (1999-03-01), Swierkowski
patent: 5894452 (1999-04-01), Ladabaum et al.
patent: 5982709 (1999-11-01), Ladabaum et al.
patent: 6004832 (1999-12-01), Haller et al.
patent: 6295247 (2001-09-01), Khuri-Yakub et al.
patent: 199 28 596 (2000-01-01), None
Sleva et al., “A Micromachined Poly(vinylidene fluoride-trifluoroethylene) Transducer for Pulse-Echo Ultrasound Applications”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 43, No. 2, Mar. 1996.*
Jin et al., “Micromachined Capacitive Transducer Arrays for Medical Ultrasound Imaging”, Proc. Ultrasonic Symposium, pp. 1877-1880, 1998.*
Khuri-Yakub et al., “Silicon Micromachined Ultrasonic Transducers”, Proc. Ultrasonic Symposium, pp. 985-991, 1998.*
Ladabaum et al, “Micromachined Ultrasonic Transducers (MUTs)”; 1995 IEEE Ultrasonic Symposium, pp. 501-504.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Microfabricated acoustic transducer with suppressed... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Microfabricated acoustic transducer with suppressed..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Microfabricated acoustic transducer with suppressed... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3249851

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.