Microdispersions of hydroxamated polymers

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – At least one aryl ring which is part of a fused or bridged...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C524S547000, C525S328200, C525S328500, C525S329400, C525S374000, C525S328400

Reexamination Certificate

active

06608137

ABSTRACT:

BACKGROUND OF THE INVENTION
Polymers containing hydroxamate groups have been known to be particularly useful for the flocculation of red muds produced in the Bayer process, see U.S. Pat. No. 4,767,540. These polymers are generally produced by reacting aqueous solutions of the polymers, e.g. polyacrylamide, with hydroxylamine salts. When the molecular weight of the polymer being hydroxamated is of such a value that the polymer performs at its best in the flocculation application, it has hitherto been in the form of a highly viscous gel. The high viscosity of the gel causes major handling problems both during and after hydroxamation since high viscosity fluids are extremely difficult to transfer from one vessel to another e.g. from reactor to storage, from storage to shipment container and from shipment container to application. The viscosity of such a gel is particularly high when the molecular weight of the polymer is high, i.e. over about 1,000,000.
Furthermore, it is customary for polymers of such high viscosities to be pre-diluted, usually in water, before they are used, so that they may be more easily mixed into the substrate which is to be subjected to flocculation. The high viscosity of hydroxamated polymer gels makes this a difficult process to undertake and often requires the use of specialized and expensive equipment. These inherent limitations in such gels necessarily means that the solids content of such gel products must be kept as low as possible in order to maintain the viscosity at a practical level, i.e. the lower the solids content, the lower the viscosity. The shipment costs of low solids solutions of polymer, however, are significantly higher because of the dilution.
In the case of conventional acrylamide polymers, the viscosity problems have been largely overcome through the development of high solids water-in-oil microdispersions, i.e. such forms as microemulsions, emulsions, microsuspensions, and as used herein, such term is meant to include said forms. As small micelles, the high viscosity polymers, while still being, in effect, gels themselves, are nevertheless, more easily dissolved in the substrates to which they are added in use. Thus, where a polymer solution at high solids is a stiff gel, a microdispersion of the same gel is more easily handled and used due to its lower viscosity.
Attempts have been made to create stable microdispersions of hydroxamated polymers in the past, see U.S. Pat. Nos. 4,587,306; 4,767,540 and 4,868,248. Due to the complexities of performing the hydroxamation reaction in this product form, however, it has not been previously possible to satisfactorily accomplish this goal. The problems attendant such hydroxamation reactions include poor incorporation of the hydroxamate functionality, poor stability of the emulsion, i.e. phase separation after relatively short periods of standing, insolubilization of the polymer, molecular weight degradation etc.
U.S. Pat. No. 4,587,306 to Vio discloses a method for preparing hydroxamated polymer emulsions from polyacrylamide backbones of low molecular weight, e.g. 4000 or below. There is no evidence, however, that the material produced was a true polymer dispersion in oil or, in fact, even an oil-in-water type. It is known that the problem of reacting a polymer backbone with a reagent becomes more acute when the molecular weight of the polymer is high. Attempts to produce, by the method taught in U.S. Pat. No. 4,587,306, both low and high molecular weight, stable, gel-free, water-in-oil hydroxamated polymer emulsions have shown that the incorporation of hydroxamate functionality is much lower (and insignificant) than shown therein for the claimed low molecular weight polymers. Furthermore, at the elevated reaction temperatures thereof, e.g. 70° C., it is very difficult to form a stable emulsion if, in fact one can be formed at all. Indeed, the examples below show that a stable, gel-free high molecular weight, hydroxamated polymer emulsion was not formed under the reaction conditions of this patent at room temperature or at 70° C. Thus, it is clear that the process of the '306 patent is not suitable for the preparation of the microdispersions claimed herein. A further distinction worth noting is that the mole ratio of KOH to hydroxylamine hydrochloride used by the process of U.S. Pat. No. 4,587,306 is only 0.78, i.e. the hydroxylamine is only partially neutralized and the reaction is therefore conducted under acidic conditions which limits the rate of the reaction and necessitates the use of extreme temperatures which further causes the formation of unstable products.
In U.S. Pat. No. 4,767,540 there is disclosed a method for the production of hydroxamated polyacrylamides in which there is purported to be produced a stable emulsion of hydroxamated polyacrylamide. However, attempts to duplicate the procedure of this patent have proven to be less than successful in that the resultant products are not stable, gel-free, water-in-oil microdispersions, see Examples 34 and 35, below.
U.S. Pat. No. 4,868,248 discloses that emulsions of hydroxamated polymers can be produced; however, the patentee fails to disclose any specific example to the production of such a polymer. Both methods described for preparing the polymers thereof are solution-based and no water-in-oil microdispersions are shown.
Accordingly, the search continues for a method for the production of stable, gel-free microdispersions of hydroxamated vinyl polymers, i.e. one in which the structural integrity of the microdispersion remains in tact and is pourable.
SUMMARY OF THE INVENTION
Stable, gel-free microdispersions of hydroxamated vinyl polymers of the water-in-oil type with micelle sizes of the discontinuous phase ranging from about 0.02 to 50 microns and having molecular weights of over about 1,000,000 have been produced. The microdispersions are gel-free and are readily dispersed in water by self-inversion.
By the use of the term “stable, gel-free” microdispersions as used herein, is meant that the microdispersion remains as two distinct phases i.e. continuous and discontinuous phases, after a reasonable period of time e.g. up to about 9 months and is pourable or free flowing. That is to say, a “gel-free” system as referred to herein, is a microdispersion which has not undergone detrimental agglomeration of the micelles of the discontinuous phase such that the microdispersion is not free flowing. Although such a microdispersion may contain gelled polymer, as long as the micelles of gelled polymer are prevented from agglomerating into large detrimental clumps, the microdispersion is still pourable and applicable for its intended use.
Hydroxamated vinyl polymers in microdispersion form are produced by reacting a water-in-oil microdispersion comprising a continuous phase and a discontinuous phase containing a precursor vinyl polymer with neutralized hydroxylamine and, preferably, an excess of base. The process does not require elevated temperatures or extended reaction times, contrary to prior art procedures.
DESCRIPTION OF THE INVENTION INCLUDING PREFERRED EMBODIMENTS
The instant invention relates to stable, gel-free, water-in-oil microdispersions comprising a continuous phase of a suitable hydrocarbon oil and an emulsifier and a discontinuous phase of an aqueous solution of an hydroxamated vinyl polymer having a molecular weight of over about 1,000,000.
The invention also relates to a method of producing stable, gel-free, water-in-oil microdispersions of hydroxamated vinyl polymers comprising reacting 1) a water-in-oil microdispersion comprising a continuous phase of a suitable hydrocarbon oil and an emulsifier and a discontinuous phase of micelles of an aqueous solution of a precursor vinyl polymer with 2) neutralized hydroxylamine and, preferably, an excess amount of base.
Exemplary of the vinyl polymers useful in the present invention are those which contain a pendant functionality which will react with hydroxylamine, i.e. those produced from acrylic, methacrylic, crotonic acids etc.; acid esters such as methyl acrylate, et

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Microdispersions of hydroxamated polymers does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Microdispersions of hydroxamated polymers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Microdispersions of hydroxamated polymers will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3124352

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.