Microdischarge lamp and array

Electric lamp and discharge devices – With gas or vapor – Having particular electrode structure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C313S356000, C313S618000

Reexamination Certificate

active

06194833

ABSTRACT:

FIELD OF THE INVENTION
The present invention concerns microdischarge lamps and arrays. By combining integrated circuit technology and gas discharges, this invention offers miniature discharge devices in silicon that can readily be manufactured as single devices or arrays for lighting, displays, sensors, frequency standards, or for the decomposition of environmentally hazardous gases. More particularly, the present invention is directed to microdischarge lamps and arrays having a cathode formed by a semiconductor substrate, such as a silicon wafer, or a semiconductor film. A microcavity in or extending from the substrate contains a discharge medium such as a gas or vapor. The entire substrate may be a semiconductor, or may include semiconductor regions, or may comprise a semiconductor film on an inexpensive substrate such as glass, to thereby form the cathode for the microcavity. Many uses of the microdischarge lamp, lamps and arrays, including displays and more general lighting applications, as well as remediation and sensing of toxic gases, will be readily apparent to those skilled in the art.
BACKGROUND OF THE INVENTION
Discharge lamps of different forms have been in use for about a century. Today, gas discharge lamps, such as mercury vapor, sodium vapor and metal halide lamps, continue to represent a substantial fraction of the lighting industry. Typically, the lamps are formed from a sealed vessel which holds the vapor or gas, and is electrically excited by a voltage applied between metal electrodes. However, conventional lamps suffer from several drawbacks, one of which is the maximum operating gas (or vapor) pressure. For some lamps such as arc lamps, the pressure is limited by the strength of the vessel material, which must be transparent or translucent to create an effective light source. Others, such as hollow cathode lamps, have a maximum gas pressure at which hollow cathode discharge operation can be achieved. Generally fabricated in metals, hollow cathodes for conventional discharge lamps typically have diameters on the order of millimeters or centimeters and are normally limited to operation at pressures of a few Torr.
One approach to addressing these limitations for high pressure arc lamps is proposed in U.S. Pat. No. 5,438,343 to Khan et al. which contemplates a large number of microcavities, each of which can operate at a higher pressure than a single large cavity. The microcavities are formed by wafer bonding of two micromachined substrates of fused quartz, sapphire, glass or other transparent or translucent material. Cavities in the separate substrates align to form vessels for containing a gas or other “filler” (e.g., metal, metal-halide, etc.) after the substrates are bonded. While a RF “electrodeless” embodiment is disclosed, other embodiments include etched recesses adjacent to the vessels in one or both of the substrates for accommodating separate metal electrodes. After the electrodes are deposited or otherwise placed in the recesses to electrically contact the discharge medium, the separate substrates are bonded together by van der Waal's forces.
Separate plugs are required at the point where the electrode connections enter the vessel wall to maintain the vacuum integrity of the device. The plug material, which may be glass, is deposited over metal electrodes to reinforce the microcavity which is weakened by the recess necessary to accommodate a separate electrode. Together, the reliance on van der Waal's forces to bond separate substrates and the need for reinforcing plugs significantly complicate the production of the device. Another difficulty with the lamp devised by Khan et al. concerns the substrate material itself. Sapphire, fused quartz and other materials used in U.S. Pat. No. 5,438,343 for transparent or translucent substrates are brittle and difficult to process. The operation of the Khan device is also limited to a positive column discharge by the device geometry.
Others have proposed cavities in hollow metal cathodes having diameters as small as approximately 1 mm. As early as 1959, White, “New Hollow Cathode Glow Discharge,”
J. Appl. Phys.
30, 711 (1959), examined hollow cathode devices having typical diameters of 750 &mgr;m formed in a variety of metals, including molybdenum and niobium. More recently, Schoenbach et al., “Microhollow Cathode Discharges,”
Appl. Phys. Lett.
68, 13 (1996), produced and studied hollow cathode lamps having cavities with diameters of approximately 700 &mgr;m machined in molybdenum and insulators made of mica. However, the processes used to produce cavities having diameters of approximately 700 &mgr;m in bulk metals are not conducive to mass production or to the fabrication of arrays of microdischarges. In addition, sputtering of the metal cathode limits device lifetime.
Schoenbach et al. also recognized the benefit of cavities smaller than 700 &mgr;m. Although Schoenbach et al. reported an effective cavity of 75 &mgr;m in molybdenum, this structure consisted of a machined hole having a diameter on the order of 700 &mgr;m forming most of the cathode, and a smaller 75 &mgr;m cathode opening, thus producing a microcavity aperture only at the top of the device. This arrangement would not lend itself to the mass production of inexpensive devices, and it is not clear that the performance characteristics of such a two-section cathode would be similar to a true microcavity cathode having a maximum diameter from below about 500 &mgr;m down to about a single micrometer. Another concern with metal cathode devices is the formation of metal-bearing compounds (including the metal halides) that are a byproduct of the reaction of various metals with some discharge media that are useful, such as the halogens.
These issues have important implications for a variety of microdischarge applications, and their potential as displays and lighting sources, in particular. The leading candidates currently being pursued for high resolution displays are liquid crystals, field emission devices, and plasma panels. Large area displays have largely been the domain of plasma panels which are now available in 42″ diagonal displays. However, plasma panels present formidable manufacturing challenges stemming from the materials employed and the approach that has been adopted for producing the display. Discharge gaps, typically 100 to 300 &mgr;m in commercial devices, are defined by the spacing between metal electrodes, one of which is often a wire (see, for example, Kyung Cheol Choi, “Microdischarge in microbridge plasma display with holes in the cathode,”
IEEE Electron Dev. Lett.
19, 186 (1998)). Precisely constructing scores (or thousands) of microdischarge devices so that the discharge gap does not vary significantly among the discharges is a difficult task.
The other display technologies currently under consideration also suffer from several drawbacks. Despite their use in portable and desktop computer displays, for example, liquid crystals are limited in brightness and offer a restricted viewing angle. Field emission devices rely on processing silicon pyramidal structures by VLSI fabrication techniques. These devices produce a weak current when a voltage is applied between the tip of the Si pyramid (or cone) and an electrode (anode). The magnitude of the emission current is sensitive to the gap between the two which, combined with the requirement that the device operate in a vacuum, mandates sophisticated manufacturing processes and has thus far limited the sizes of field emission displays to typically 5-10″ (along the diagonal).
Accordingly, it is an object of the present invention to provide an improved microdischarge device that eliminates several limitations associated with the manufacture and performance of conventional lamps and displays.
A further object of the present invention is to provide an improved microdischarge device having at least one microcavity electrically contacted to a one-piece or multilayered substrate which forms a cathode for the microcavity.
Another object of the present invention is to

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Microdischarge lamp and array does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Microdischarge lamp and array, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Microdischarge lamp and array will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2603093

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.