Microcapsules having high carotenoid content

Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Particulate form

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C264S004100, C264S004300, C264S213000, C264S213000, C428S402240, C428S403000, C424S489000, C424S490000, C424S491000, C424S493000

Reexamination Certificate

active

06663900

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention relates generally to microencapsulated carotenoid compounds and, more particularly, to microcapsules having a carotenoid content in the range of between about 5% and about 20% by weight that are suitable for addition to food and personal care products and to dietary supplements, typically in the form of tablets or capsules.
Carotenoids are naturally-occurring yellow to red pigments of the terpenoid group that can be found in plants, algae, bacteria, and certain animals, such as birds and shellfish. Carotenoids include hydrocarbons (carotenes) and their oxygenated, alcoholic derivatives (xanthophylls). They include actinioerythrol, astaxanthin, bixin, canthaxanthin, capsanthin, capsorubin, &bgr;-8′-apo-carotenal (apo-carotenal), &bgr;-12′-apo-carotenal, a-carotene, &bgr;-carotene, “carotene” (a mixture of &agr;- and &bgr;-carotenes), &ggr;-carotene, &bgr;-cryptoxanthin, lutein, lycopene, violerythrin, zeaxanthin, and esters of hydroxyl- or carboxyl-containing members thereof. Many of the carotenoids occur in nature as cis- and trans-isomeric forms, while synthetic compounds are frequently racemic mixtures.
Carotenoids are valuable as pigments and as biologically active compounds. Carotenoids are used in the food, personal care, pharmaceutical industries and nutritional supplements, most commonly to date because of their health benefits. The carotenoids have been extensively studied for their effect on various chronic diseases, such as age-related macular degeneration, skin cancer and heart disease. Among the dietary carotenoids, the focus has been on &bgr;-carotene because of its pro-vitamin A activity. However, many research studies have elicited the broad role that other carotenoids play in human and animal health. The xanthophylls in particular have been shown to possess strong antioxidant activities and may be useful in protecting humans from certain diseases. For example, lutein and zeaxanthin are reddish-orange pigments that have been inversely correlated with reduction of risk for macular degeneration (Seddon et al., 1994.
J. Amer. Med. Assoc
. 272(18): 1413-1420); lycopene is a red pigment that has been implicated in a reduced risk of prostate cancer.
The attractiveness of carotenoids as pigments is at least partially due to the carotenoids being naturally occurring compounds. Carotenoids have long been used in the poultry industry to improve the appearance of broiler's skin and egg yolks. In foods and beverages, carotenoids, such as &bgr;-carotene, are added to replace artificial colors and to increase their nutritional value.
One area in which carotenoids are being used is in human multivitamin/multimineral products and dietary supplements, where they are typically added to tablet or capsule formulations. A problem with the use of carotenoids in food and personal care products, including supplement tablets, is the degradation of most carotenoids upon exposure to heat, oxygen, and light. Degradation will be accelerated at the elevated pressures used in tabletting. Typically a slight overage (10-30%) of the initial amount of the carotenoid is added to the tablet to meet the level desired allowing for losses during formation of the tablet. One method currently used commercially to increase the stability of the carotenoids is to microencapsulate the carotenoids in concentrations up to 10%. The inert coating materials increase the stability of the carotenoids during both the formation and shelf life of the tablet.
A consideration of tablet formulators is the volume of the tablet that must be swallowed by the consumer. Particularly with so-called multi-vitamin/multi-mineral products, a decision whether or not to add a particular new ingredient to a formulation already containing a large number of ingredients may depend on the additional volume of material that must be added to the tablet in order to include the new ingredient. Obviously, the higher the active ingredient content in the new product being added to the tablet formulation, the less volume of material that must be added.
The prior art has attempted to address the heat and oxygen lability of the carotenoids by encapsulating the carotenoid source with a coating material mix in a fluidized bed, spray dryer, or similar microencapsulation process. While the resistance to losses of active ingredient during tabletting and after tabletting (shelf-life) can be increased with prior art microencapsulation techniques, these techniques are known to result in a loss in activity during microencapsulation and further do not permit higher than up to about 5 to 10% of the carotenoid in the microcapsule or beadlet. Tabletting is also known to be inimical to the integrity of certain microcapsules, resulting in exposure of the carotenoid to oxygen and metals or minerals acting as oxidation catalysts in the environment of the tablet.
There is a need for microcapsules or beadlets of carotenoids that contain high amounts of the carotenoid, are formed by a process which preferably limits the loss of carotenoid during formation of the microcapsule, and provide a coating which protects the carotenoid from losses during manufacture or processing of the food, dietary supplement or personal care product.
SUMMARY OF THE INVENTION
The invention consists of coated microcapsule of one or more carotenoids that have a carotenoid content of between about 10% and about 50% by weight. The microcapsules are formed using a fluidized bed coating machine that produces minimal losses in carotenoid activity during the microencapsulation process. Microcapsules produced by the process will release the encapsulated carotenoids upon ingestion and are suitable for addition to food, multivitamins, dietary supplements and personal care products. The microcapsules also survive tabletting substantially intact and protect the activity of the encapsulated carotenoids during tabletting and during storage of the tablet or other food or personal care product prior to consumption or use by the consumer.
The carotenoid used as a starting material in the process is preferably a pure or crystalline form of the carotenoid as opposed to an oil suspension or the like where the carotenoid content of the starting material is already diluted. In one form of the process, the carotenoid-containing starting material is added to a fluidized bed dryer and the flow of heated air is started. A liquid coating material is sprayed on to the fluidized bed of the carotenoid. The coating material consists of an aqueous solution of a sugar or sorbitol, a starch or maltodextrin, and optionally a coating protein such as gelatin. The liquid coating material is applied to the carotenoid in the dryer until the moisture-adjusted weight has been added to equal the target formulation of the microcapsule being formed. In an alternative form of the process, the sugar or other inert material is suspended in the fluidized bed dryer and the carotenoid is added to the aqueous solution of the starch/maltodextrin, or starch/maltodextrin and gelatin, and sprayed on the sugar. It has surprisingly been found that, even though the initially unprotected carotenoid is exposed to elevated temperatures (between about 150° and about 200° F.) in an oxygen-rich (i.e., air) atmosphere, essentially no loss in activity of the carotenoid is found when the microcapsule are measured immediately after the microencapsulating process, and after extended storage periods of the microcapsules at temperatures up to 100° F.
Microscopic examination of tablets formed using conventional tabletting techniques showed that the microcapsules remained substantially intact and that the coating material protected the encapsulated carotenoid against degradation during tabletting.
Carotenoids most suitable for incorporation in microcapsules of the present invention include those carotenoids known to be especially heat, oxygen, or light labile, specifically lutein, &bgr;-carotene, &bgr;-cryptoxanthin, canthaxanthin, &agr;-carotene, lycopene, and zeaxanthin. These carotenoids may be inclu

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Microcapsules having high carotenoid content does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Microcapsules having high carotenoid content, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Microcapsules having high carotenoid content will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3175110

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.