Microbicidal composition containing potassium sodium tartrate

Drug – bio-affecting and body treating compositions – Inorganic active ingredient containing – Heavy metal or compound thereof

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S600000, C424S616000, C424S617000, C424S620000, C424S629000, C424S630000, C424S638000, C424S639000, C424S641000, C424S644000, C424S646000, C424S649000, C424S650000, C424S651000, C424S652000, C424S653000, C424S654000, C424S655000, C424S682000, C424S702000, C424S722000, C424SDIG006, C514S184000, C514S189000, C514S190000, C514S191000, C514S492000, C514S493000, C514S494000, C514S495000, C514S496000, C514S497000, C514S498000, C514S499000, C514S500000, C514S501000, C514S502000, C514S503000, C514S504000, C514S

Reexamination Certificate

active

06630172

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates in general to controlling microorganisms and more particularly relates to microbicides which are preferably environmentally friendly and non-toxic to mammals and which are highly effective against viruses, amoebea, bacteria (both gram-negative and -positive), fungi, algae, spores, yeast, and the like.
BACKGROUND OF THE INVENTION
Water is the most important element of life since it comprises almost 80% of the human body. In addition, food hygiene depends solely on water, and therefore contamination of water is a common vehicle for the transport of epidemic diseases to humans like Typhoid, food poisoning, and Dysentery. For example, Psychrophilic bacteria's presence in the micro-flora in water can affect refrigerated food and spoil it. Hence, water contamination cannot be overlooked and extreme measures should be taken to assure a high quality of water to sustain life.
With the advent of technology, clean water is becoming a scarce commodity. Water contamination is unequivocally becoming a worldwide problem with unknown ramifications, and billions of US dollars are spent annually to improve its quality. Contamination of waters is not only restricted to industrialized countries, but includes developing nations as well. Therefore, there is an immediate need to find poignant solutions to maintain and preserve water sources.
Recently, there has been a growing interest among scientists and engineers to develop new water and food disinfectant technologies to clean water from dangerous microorganisms. Various methods have been employed which are divided into two categories; namely, physical, chemical, or both. The physical category is represented by techniques utilizing ultrafiltration, reverse osmosis, radiation, freezing, heating, and ultrasound. Although these methods have proved to be effective, the drawbacks include the large electricity requirements and expensive equipment. On the other hand, the chemical category relies on the use of chemical adjuvants which exhibit biocidal properties such as aldehydes, phenols, alcohol, potassium permanganate, and chlorine and certain chlorine containing compounds. Some of these chemicals have many disadvantages associated with them and are now considered poisonous compounds. For instance, people coming into contact with these substances can develop skin irritation and suffer from long time illnesses which in some cases can be fatal; not to mention the unpleasant taste and odor associated with these chemicals. In addition, formation of mutagenic and carcinogenic agents, and genetic resistance are also some of their disadvantages. Notwithstanding, such compounds have afforded a way to battle these harmful microorganisms and their effectiveness have been unequivocally demonstrated.
Other methods have relied upon the use of ultra-violet irradiated silver fluoride solutions containing silver as a source of germicide activities, such as U.S. Pat. No. 3,422,183, incorporated herein in its entirety by reference. However, such techniques require expensive equipment and large amounts of electricity.
Hydrogen peroxide is a strong oxidizing agent, and it has been used for the past 40 years as a disinfectant. Its main advantage is that it does not produce toxic residue or by-products. It has been used ubiquitously as an indirect food additive, as a disinfectant in hospitals, as a decontamination and purification agent of industrial waste water, and as a cleaning agent for exhaust air. Nonetheless, it decomposes readily to form water and oxygen, and has high sensitivity to sunlight and UV rays. Therefore, it is not suited for long-term use since recontamination cannot be circumvented.
In 1880, the Swiss botanist Carl van Nageli observed that highly diluted silver solutions have an algicidal effect. To describe this effect he coined the term “Oligodynamic”. Colloidal silver, which is a pure, all-natural substance consisting of sub-microscopic clusters of silver ions held in suspension in de-ionized water by tiny positive charges on the silver ions, is a powerful prophylactic antibiotic which was used for years with no known side effects. It acts as an inhibitor disabling particular enzymes which bacteria, fungi, and viruses used in their mode of metabolism.
Based on this oligodynamic property, U.S. Pat. No. 4,915,955, incorporated in its entirety herein by reference, combines the germicidal effects of hydrogen peroxide with silver, an inorganic acid, and an organic stabilizer at concentrations of 10-35 mg/l to combat many forms of bacteria and viruses. The process is based on silver ions, with the aid of hydrogen peroxide, damaging the protective biofilms of these microorganisms. Hence, this method depends solely on killing germs intercellularly. Accordingly, there is a need to develop a new generation of microbicidal agents that overcome one or more of the above-described disadvantages.
International Published Patent Application No. WO 00/62618 describes the formation of metal complexes suitable as disinfectants and sanitizers to combat pathogenic microorganisms. It relies on using metal ions and amino acids to form complexes, which serve as carriers for metals, in order to diffuse into the intra-cellular medium of such microorganisms where it exhibits its biocidal activities. The composition can be prepared by mixing a metal salt compound in an aqueous solution, and an inorganic acid at room temperature to adjust the pH of the solution; adding at least on an equimolar basis, depending on the valency of the metals, at least one amino acid to form an insoluble metal complex while homogenizing the mixture; and depending on its use, the resultant solution can then be proportioned with various ratios to make suitable disinfectants either by adding appropriate amount of distilled-deionized water and/or by the addition of chlorhexidine gluconate, chlorhexidine digluconte, chlorhexidine dihydrochloride, chlorhexidine diacetate, isopropanol, and hydrogen peroxide. According to a preferred embodiment, silver nitrate is used as the metal salt; distilled deionized water is used to make up the aqueous medium; phosphoric acid is used as the inorganic acid; glutamic acid is used as the amino acid; and hydrogen peroxide is used as the synergetic disinfectant.
SUMMARY OF THE INVENTION
The present invention relies on using metal ions (M). A chemical matrix or complex is formed from metal ions and potassium sodium tartrate used in at least one fourth (¼) of the stoichiometric amount of the metal ion, depending on the valency of the metal. These concentrated complexes can then be mixed with water to form suitable disinfectants.
A particularly useful application of the disinfectant of the present invention is in the preservation of flowers and plants, as a general disinfectant, sterilization of articles and surfaces and areas, including, but not limited to, food, liquids, (e.g., water, beverages), animal feed, pharmaceuticals, hospitals, surgical equipment, swimming pools, saunas, fish, poultry, cattle, and other farming uses, and the like.
It is to be understood that the preceding general discussion and the discussion which follows are considered explanatory and exemplary in nature, and are solely intended to give additional merits of the current invention, as claimed.
DETAILED DESCRIPTION OF THE PRESENT INVENTION
The present invention provides a suitable concentrate of organo-metal compounds that form suitable disinfectants upon admixing with water or other aqueous sources. The basic principle that governs the formation of such a concentrate is the fact that the metal ions are complexed with potassium sodium tartrate (hereinafter “PST”). The PST or ion thereof is used in at least one-fourth of the stoichiometric amounts or more (based on the metal ion present) to form organic complexes.
To enhance its activity, the concentrated organic complex can be mixed with other disinfectants, including, but not limited to, isopropanol, chlorhexidine gluconate, chlorhexidine digluconate, chlorhexidine dihydrochloride, ch

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Microbicidal composition containing potassium sodium tartrate does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Microbicidal composition containing potassium sodium tartrate, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Microbicidal composition containing potassium sodium tartrate will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3146577

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.