Chemistry: molecular biology and microbiology – Micro-organism – per se ; compositions thereof; proces of...
Reexamination Certificate
1997-08-26
2003-08-26
Naff, David M. (Department: 1651)
Chemistry: molecular biology and microbiology
Micro-organism, per se ; compositions thereof; proces of...
C435S174000, C435S177000, C435S261000, C435S283100, C435S308100
Reexamination Certificate
active
06610528
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to methods for capturing samples for evaluation. More particularly, the present invention relates to an approach which allows the collection and concentration of microbes, possessing genes encoding specific enzymes or small molecule pathways, from complex or dilute microbial populations in aqueous or terrestrial environments.
BACKGROUND OF THE INVENTION
There is a critical need in the chemical industry for efficient catalysts for the practical synthesis of optically pure materials; enzymes can provide the optimal solution. All classes of molecules and compounds that are utilized in both established and emerging chemical, pharmaceutical, textile, food and feed, detergent markets must meet stringent economical and environmental standards. The synthesis of polymers, pharmaceuticals, natural products and agrochemicals is often hampered by expensive processes which produce harmful byproducts and which suffer from low enantioselectivity. Enzymes have a number of remarkable advantages which can overcome these problems in catalysis: they act on single functional groups, they distinguish between similar functional groups on a single molecule, and they distinguish between enantiomers. Moreover, they are biodegradable and function at very low mole fractions in reaction mixtures. Because of their chemo-, regio- and stereospecificity, enzymes present a unique opportunity to optimally achieve desired selective transformations. These are often extremely difficult to duplicate chemically, especially in single-step reactions. The elimination of the need for protection groups, selectivity, the ability to carry out multi-step transformations in a single reaction vessel, along with the concomitant reduction in environmental burden, has led to the increased demand for enzymes in chemical and pharmaceutical industries. Enzyme-based processes have been gradually replacing many conventional chemical-based methods. A current limitation to more widespread industrial use is primarily due to the relatively small number of commercially available enzymes. Only ~300 enzymes (excluding DNA modifying enzymes) are at present commercially available from the >3000 non DNA-modifying enzyme activities thus far described.
The use of enzymes for technological applications also may require performance under demanding industrial conditions. This includes activities in environments or on substrates for which the currently known arsenal of enzymes was not evolutionarily selected. Enzymes have evolved by selective pressure to perform very specific biological functions within the milieu of a living organism, under conditions of mild temperature, pH and salt concentration. For the most part, the non-DNA modifying enzyme activities thus far described have been isolated from mesophilic organisms, which represent a very small fraction of the available phylogenetic diversity. The dynamic field of biocatalysis takes on a new dimension with the help of enzymes isolated from microorganisms that thrive in extreme environments. Such enzymes must function at temperatures above 100° C. in terrestrial hot springs and deep sea thermal vents, at temperatures below 0° C. in arctic waters, in the saturated salt environment of the Dead Sea, at pH values around 0 in coal deposits and geothermal sulfur-rich springs, or at pH values greater than 11 in sewage sludge. Enzymes obtained from these extremophilic organisms open a new field in biocatalysis.
For example, several esterases and lipases cloned and expressed from extremophilic organisms are remarkably robust, showing high activity throughout a wide range of temperatures and pHs. The fingerprints of five of these esterases show a diverse substrate spectrum, in addition to differences in the optimum reaction temperature. As seen in
FIG. 1
, esterase 5 (EST5) recognizes only short chain substrates while esterase 2 (EST2) only acts on long chain substrates in addition to a significant difference in the optimal reaction temperature. These results suggest that more diverse enzymes fulfilling the need for new biocatalysts can be found by screening biodiversity.
Furthermore, virtually all of the enzymes known so far have come from cultured organisms, mostly bacteria and more recently archaea. Traditional enzyme discovery programs rely solely on cultured microorganisms for their screening programs and are thus only accessing a small fraction of natural diversity. Several recent studies have estimated that only a small percentage, conservatively less than 1%, of organisms present in the natural environment have been cultured (see Table I). Amann et al.,
Microbiol. Rev.
59:143 (1995); Barnes et al.,
Proc. Natl. Acad. Sci.
91:1609 (1994); Torvisk et al.,
Appl. Environm. Microbiol.
56:782 (1990). Hence, this vast majority of microorganisms represents an untapped resource for the discovery of novel biocatalysts.
Within the last decade there has also been a dramatic increase in the need for bioactive compounds with novel activities. This demand has arisen largely from changes in worldwide demographics coupled with the clear and increasing trend in the number of pathogenic organisms that are resistant to currently available antibiotics. For example, while there has been a surge in demand for antibacterial drugs in emerging nations with young populations, countries with aging populations, such as the US, require a growing repertoire of drugs against cancer, diabetes, arthritis and other debilitating conditions. The death rate from infectious diseases has increased 58% between 1980 and 1992 and it has been estimated that the emergence of antibiotic resistant microbes has added in excess of $30 billion annually to the cost of health care in the US alone. As a response to this trend pharmaceutical companies have significantly increased their screening of microbial diversity for compounds with unique activities or specificities.
There are several common sources of lead compounds (drug candidates), including natural product collections, synthetic chemical collections, and synthetic combinatorial chemical libraries, such as nucleotides, peptides, or other polymeric molecules. Each of these sources has advantages and disadvantages. The success of programs to screen these candidates depends largely on the number of compounds entering the programs, and pharmaceutical companies have to date screened hundred of thousands of synthetic and natural compounds in search of lead compounds. Unfortunately, the ratio of novel to previously-discovered compounds has diminished with time. The discovery rate of novel lead compounds has not kept pace with demand despite the best efforts of pharmaceutical companies. There exists a strong need for accessing new sources of potential drug candidates.
The majority of bioactive compounds currently in use are derived from soil microorganisms. Many microbes inhabiting soils and other complex ecological communities produce a variety of compounds that increase their ability to survive and proliferate. These compounds are generally thought to be nonessential for growth of the organism and are synthesized with the aid of genes involved in intermediary metabolism hence their name—“secondary metabolites”. Secondary metabolites that influence the growth or survival of other organisms are known as “bioactive” compounds and serve as key components of the chemical defense arsenal of both micro- and macroorganisms. Humans have exploited these compounds for use as antibiotics, antiinfectives and other bioactive compounds with activity against a broad range of prokaryotic and eukaryotic pathogens. Approximately 6,000 bioactive compounds of microbial origin have been characterized, with more than 60% produced by the gram positive soil bacteria of the genus Streptomyces. Of these, at least 70 are currently used for biomedical and agricultural applications. The largest class of bioactive compounds, the polyketides, include a broad range of antibiotics, immunosuppressants and anticancer agents which together account for sales of over $5 bil
Keller Martin
Mathur Eric J.
Rusterholz Karl
Stein Jeffrey L.
Diversa Corporation
Gray Cary Ware & Freidenrich LLP
Haile Lisa A
Naff David M.
Ware Debunch K.
LandOfFree
Microbial enrichment using a container having a plurality of... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Microbial enrichment using a container having a plurality of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Microbial enrichment using a container having a plurality of... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3121272