Microarray fabrication techniques and apparatus

Optical waveguides – Optical imaging tunnel

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C385S127000, C436S518000, C433S029000, C435S287100

Reexamination Certificate

active

06594432

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to mechanisms and methods used to form a microarray of multiple probes used to detect the presence of a target biological material or a target chemical.
BACKGROUND
A microarray is an array of spots of biological or chemical samples (“probes”) immobilized at predefined positions on a substrate. Each spot contains a number of molecules of a single biological or chemical material. To interrogate the array, the microarray is flooded with a fluid containing one or more biological or chemical samples (the “target”), elements of which typically interact with one or more complementary probes on the microarray. In DNA microarrays in particular, the probes are oligonucleotide or cDNA strains, and the target is a fluorescent or radioactive-labeled DNA sample. The molecular strands in the target hybridize with complementary strands in the probe microarray. The hybridized microarray is inspected by a microarray reader, which detects the presence of the radioactive labels or which stimulates the fluorescent labels to emit light through excitation with a laser or other energy sources. The reader detects the position and strength of the label emission in the microarray. Since the probes are placed in predetermined and thus known positions in the microarray, the presence and quantity of target sequences in the fluid are identified by the position at which fluorescence or radiation is detected and the strength of the fluorescence or radiation.
Microarray technology provides an extremely useful tool to conduct biological or chemical experiments in a massive parallel fashion because of the large number of different probes that one can fabricate onto the microarray. It is particularly powerful in screening, profiling and identifying DNA samples.
Microarrays today come as two-dimensional probe matrices fabricated on solid glass or nylon substrates. Because the target samples are generally hard to produce or very expensive, it is highly desirable to perform assays on as many features as possible on a single microarray. This calls for a significant increase in probe density and quantity on a single substrate. In general, microarrays with probe pitch smaller than 500 &mgr;m (i.e. density larger than 400 probes per sqr. centimeter) is referred as high density microarrays, otherwise, they are “low density” microarrays.
There are two microarray fabrication techniques on the market, photolithographic and robotic spotting techniques. The photolithographic technique [U.S. Pat. Nos. 5,445,934, 5,744,305] adapts the same fabrication process for electronic integrated circuits to synthesize probes in situ base by base. This technique requires a large capital outlay for equipment running up to hundreds of millions of dollars. The initial setup of new microarray designs is also very expensive due to the high cost of producing photo masks. This technique is therefore only viable in mass production of standard microarrays at a very high volume. Even at high volumes, the complexity in synthesis still limits the production throughput resulting in a high microarray cost. This complexity also limits the length of the synthesized DNA strain to the level of a short oligonucleotide (~25 bases), which reduces the specificity and sensitivity of hybridization in some applications.
The established robotic spotting technique [U.S. Pat. No. 5,807,522] uses a specially designed mechanical robot, which produces a probe spot on the microarray by dipping a pin head into a fluid containing an off-line synthesized DNA and then spotting it onto the slide at a predetermined position. Washing and drying of the pins are required prior to the spotting of a different probe in the microarray. In current designs of such robotic systems, the spotting pin, and/or the stage carrying the microarray substrates move along the XYZ axes in coordination to deposit samples at controlled positions of the substrates. Because a microarray contains a very large number of different probes, this technique, although highly flexible, is inherently very slow. Even though the speed can be enhanced by employing multiple pin-heads and spotting multiple slides before washing, production throughput remains very low. This technique is therefore not suitable for high volume mass production of microarrays.
In addition to the established quill-pin spotting technologies, there are a number of microarray fabrication techniques that are being developed. These include the inkjet technology and capillary spotting.
Inkjet technology is being deployed to deposit either cDNA/oligonucleotides, or individual nucleotides at defined positions on a substrate to produce an oligonucleotide microarray through in situ synthesis. Consequently, an oligonucleotide is produced in situ one base at a time by delivering monomer-containing solutions onto selected locations, reacting the monomer, rinsing the substrate to remove excess monomers, and drying the substrate to prepare it for the next spot of monomer reactant.
An emerging spotting technique uses capillaries instead of pins to spot DNA probes onto the support. Four references discuss capillary-based spotting techniques for array fabrication:
WO 98/29736, “Multiplexed molecular analysis apparatus and method”, by Genometrix Inc.
WO 00/01859, “Gene pen devices for array printing”, by Orchid Biocomputer Inc.
WO 00/13796, “Capillary printing system”, by Incyte Pharmaceuticals Inc.
WO 99/55461, “Redrawn capillary imaging reservoir”, by Corning Inc.
In summary, due to the high cost of production, microarrays fabricated with existing technologies are far too expensive as a single use lab supply.
SUMMARY OF THE INVENTION
The invention provides a probe printing system having a print head composed of one or more bundles of randomly bundled or discretely bundled capillaries as described herein. A bundle of capillaries has a portion where at least the proximal ends of the capillaries are immobilized in a planar matrix and a facet is formed for printing. The immobilized portion is preferably sufficiently rigid that it may be used to print a probe microarray upon a substrate with minimal or no deformation (deformation may result in portions of the microarray not being printed to the substrate). The immobilized portion is therefore sufficiently rigid to ensure good contact with the substrate across the portion of the facet in contact with the substrate. The distal ends of the capillaries may be free or may be attached to reservoirs. The capillaries include, but are not limited to, fiber optic or other light-conducting capillaries, through which light as well as fluid can be conveyed; and other flexible or rigid capillaries.
A capillary bundle in one embodiment of the invention has a plurality of individual capillaries having proximal and distal ends. The outer diameter of a capillary is typically less than about 300 micron, preferably the outer diameter is less than about 100 micron. Each of the capillaries of the bundle has a channel extending from the proximal end to the distal end of the capillary, and each of the capillaries has a channel-facing wall. The channel diameter is preferably less than 100 micron.
A bundle of individual capillaries is distinguished from a unitary structure in which tubular preforms are fused to one another to form a large array of preforms and then stretched to form a unitary array of channels.
The proximal ends of capillaries of a bundle may be secured to one another in a solid mass such that the proximal ends of the capillaries are substantially coplanar at a facet of the solid mass. Proximal ends are substantially coplanar when liquid flowing through the capillaries form spots on a flat surface of the substrate when the facet of the solid mass is either pressed against the surface or is in sufficient proximity to the surface that droplets from the capillaries are deposited on the surface. Generally, proximal ends are substantially coplanar when all ends terminate within about 100 microns of one another. Preferably, proximal ends terminate within about

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Microarray fabrication techniques and apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Microarray fabrication techniques and apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Microarray fabrication techniques and apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3044620

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.