Micro-stream rotator with adjustment of throw radius and...

Fluid sprinkling – spraying – and diffusing – Slinger or splasher; or deflector rotated relative to effluent – Nozzle delivers fluid to deflector

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C239S205000, C239S231000, C239S252000, C239S256000, C239S262000, C239S443000, C239S476000, C239S484000

Reexamination Certificate

active

06499672

ABSTRACT:

TECHNICAL FIELD
This invention relates to landscape and agricultural irrigation sprinklers and, specifically, to a rotating, viscously damped sprinkler which permits adjustment of the stream pattern, throw radius and flow rate.
BACKGROUND
Sprinklers utilizing a fixed nozzle to emit a stream onto the grooves of a viscously damped rotor plate are known in the art and examples of such constructions may be found in commonly owned U.S. Pat. Nos. 5,288,022 and 5,058,806. Sprinklers of this type may be incorporated into pop-up type arrangements or they may be mounted on, for example, fixed riser pipes. In either case, it is possible to employ adjustable or interchangeable nozzles having orifices which emit a 360° stream, a 180° stream, a 90° stream, etc. so as to produce a desired sprinkling pattern, to be determined primarily by the location of the sprinkler. There is also a need, however, to be able to adjust the throw radius and flow rate of the sprinkler without varying the water pressure.
SUMMARY OF THE INVENTION
This invention provides, in one exemplary embodiment, an internal rotary valve in the base of the sprinkler mechanism which can be actuated by pressing down on the sprinkler rotor plate to thereby engage a valve drive mechanism, and then rotating the rotor plate to open or close the internal valve between maximum open or closed positions, or any position therebetween.
In another exemplary embodiment, the flow rate adjustment mechanism incorporates an axially movable flow restrictor that is configured to restrict, but not completely shut off, the flow of water to the sprinkler nozzle.
As is well known in the art, the rotor plate itself is provided with specially configured grooves which cause the rotor plate to rotate when a stream emitted from the nozzle impinges on the grooves. The plate itself is mounted for rotation about a normally fixed, i.e., non-rotating shaft. Within the rotor plate, there is a chamber adapted to be at least partially filled with a high viscosity fluid. At the same time, there is a fixed stator mounted on the shaft, located within the chamber. As the rotor plate and chamber wall rotate about the shaft and the fixed stator, shearing of the viscous fluid occurs, slowing down the rotation of the rotor plate to produce a uniform and more well defined pattern. The shaft extends out of the rotor plate and into the sprinkler body, through the center of the nozzle. The nozzle itself is interchangeable with other nozzles having various opening configurations.
In one exemplary embodiment, the nozzle and an underlying generally cylindrical core flow path component are sandwiched between a removable sprinkler body cap and a baffle fixed to the lower end of the shaft for rotation with the shaft. The baffle contains a series of spokes or lobes which can rotate relative to ports formed in the core flow path component to regulate the amount of water flowing to the nozzle.
A rotor plate cap, held in place on the rotor plate by a retainer ring, is formed with an annular array of teeth adapted to engage with a mating annular array of teeth formed in the upper surface of the stator within the fluid chamber. The rotor plate cap and rotor plate can be pressed downwardly (assuming an upright orientation for the sprinkler) on the shaft (and relative to the shaft) so as to cause the teeth on the rotor plate cap and the fixed stator to engage. With the teeth so engaged, a “drive” mechanism is established between the rotor plate and the shaft so that manual rotation of the rotor plate causes the shaft to rotate as well. This results in the baffle rotating relative to the core flow path component to thereby throttle the flow through ports in the core to achieve the desired throw radius. When the rotor plate is returned upwardly to its original position, the respective teeth on the rotor plate cap and stator are disengaged, and the rotor plate is then free to rotate relative to the shaft in a normal operating mode.
In a second exemplary embodiment, the sprinkler body is simplified by incorporating three separate component parts, i.e., the sprinkler body cap, an inner sleeve and a part of the nozzle into a single base piece. The remaining components are mounted on the shaft, including a second nozzle component and the flow rate adjustment mechanism. With regard to the latter, a collar is press fit onto the lower end of the shaft, with threads formed on its exterior surface. A sleeve-like throttle member, constrained against rotation by interaction with a spider component, is threaded onto the collar so that manual rotation of the axially stationary shaft results in the throttle member moving up or down on the shaft, depending upon the direction of rotation of the shaft. The throttle member thus moves axially toward or away from a fixed seat secured to an otherwise conventional filter device which is itself fixed to the lower end of the base. The fixed seat comprises four vertically extending ribs in an annular array so that, when the throttle member is fully engaged with the seat, water flow to the nozzle will be restricted but not shut off. The way in which the shaft is rotated manually via the rotor plate to make the desired adjustment is otherwise as described above in connection with the first embodiment.
Thus, in accordance with its broader aspects, the present invention relates to a rotating stream sprinkler comprising a rotor plate supported on one end of a shaft for rotation, in an operative mode, relative to the shaft; a nozzle located along the shaft upstream of the rotor plate; the rotor plate formed with a chamber and one end of the shaft has a stator fixed thereto within the chamber, the fluid chamber at least partially filled with a viscous fluid; and wherein the chamber is at least partially closed at an upper end thereof by a rotor cap plate; and further wherein an underside of the rotor cap plate is provided with a first plurality of teeth and an upper surface of the stator is provided with a second plurality of mating teeth adapted to engage the first plurality of teeth in an adjustment mode.
In accordance with another aspect, the present invention relates to a rotating sprinkler comprising a sprinkler body having an inlet and an outlet including a stationary nozzle; a rotatable stream distributor plate mounted on a shaft downstream of the nozzle and having stream distribution grooves adapted to receive a stream from the nozzle and to distribute the stream; and means for adjusting the flow rate of water flowing to the nozzle.
In accordance with still another aspect, the present invention relates to a rotating sprinkler comprising a sprinkler body having an inlet and an outlet including a stationary nozzle; a rotatable stream distributor plate mounted on a shaft for rotation relative to the shaft, the distributor plate located downstream of the nozzle and having stream distribution grooves adapted to receive a stream from the nozzle and to distribute the stream; a flow rate adjustment mechanism comprising a throttle member threadably mounted on the shaft for movement relative to the shaft, toward or away from an annular seat having a discontinuous edge such that the flow rate cannot be shut off by having the throttle member engage the seat.
In still another aspect, the present invention relates to a rotating stream sprinkler comprising means for delivering liquid to a nozzle; means downstream of the nozzle for distributing liquid emitted from the nozzle in a desired sprinkling pattern; means for adjusting flow rate of water to the nozzle; and means for controlling speed of rotation of the means for distributing the liquid.
In still another aspect, the present invention relates to a rotating sprinkler comprising a sprinkler body; having an inlet, an outlet including a stationary nozzle; a rotatable stream distributor plate mounted on a shaft for rotation relative to the shaft, the distributor plate located downstream of the nozzle and having stream distribution grooves adapted to receive a stream from the nozzle and to distribute the stream; the distributor

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Micro-stream rotator with adjustment of throw radius and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Micro-stream rotator with adjustment of throw radius and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Micro-stream rotator with adjustment of throw radius and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2971396

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.