Micro-environment chamber and system for rinsing and drying...

Cleaning and liquid contact with solids – Apparatus – With plural means for supplying or applying different fluids...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C134S102100, C134S153000, C134S902000, C134S147000, C134S182000

Reexamination Certificate

active

06318385

ABSTRACT:

CROSS-REFERENCE TO RELATED APPLICATIONS
Not Applicable
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not Applicable
BACKGROUND OF THE INVENTION
The industry is constantly seeking to improve the processes used to manufacture integrated circuits from wafers. The improvements come in various forms but, generally, have one or more objectives as the desired goal. The objectives of many of these improved processes include: 1) decreasing the amount of time required to process a wafer to form the desired integrated circuits; 2) increasing the yield of usable integrated circuits per wafer by, for example, decreasing the likelihood of contamination of the wafer during processing; 3) reducing the number of steps required to turn a wafer into the desired integrated circuits; and 4) reducing the cost of processing the wafers into the desired integrated circuit by, for example, reducing the costs associated with the chemicals required for the processing.
One of the most crucial processes in the fabrication of integrated circuits involves the rinsing and drying of the semiconductor wafers between various chemical processing steps. During rinsing, DI water is often used to assist in the removal of chemicals from the surface of the wafer. After rinsing is completed, the wafer surface must be dried. It is during the drying step that wafer contamination often results. Such contamination is due to the fact that the evaporation of the DI water deposits contaminant particles on the wafer surface.
Various techniques have been proposed for the rinsing and drying of semiconductor wafers. One technique used to both rinse and dry wafers relies upon a spin rinser/dryer. Such a system uses a DI rinse water spray to rinse the wafer. The wafer is spun during the drying step thereby removing the water from the surface of the semiconductor wafer through evaporation and the action of centripetal acceleration.
Other techniques used to dry wafers include the use of IPA vapor dryers, full displacement IPA dryers, and other forms of IPA dryers. These IPA dryers rely upon a large quantity of a solvent, such as IPA and other volatile organic liquids, to facilitate drying of the semiconductor wafer. One limitation of this type of dryer is its use of large solvent quantities which are highly flammable and often hazardous to health and environment. Further, these dryer types are often quite expensive. Still further, the large quantities of hot solvent are often incompatible with certain recessed pattern wafers and may be detrimental to certain device structures.
Another drying technique uses hot DI process water to rinse and promote drying of the semiconductor wafer. Since the DI water is heated, the liquid on the wafer evaporates faster and more efficiently than DI water at standard ambient temperatures.
A still further drying technique is known as a Marangoni dryer. In a Marangoni dryer, the wafer is slowly withdrawn from the rinsing liquid in an atmosphere having a vapor that is miscible with the rinsing liquid. As the wafer is withdrawn, a meniscus is formed at the wafer surfaces. The surface tension of the rinsing fluid at the meniscus is reduced as a result of the presence of the vapor. The reduced surface tension gives rise to a substantially particle free drying process.
In each of the foregoing processes, one or more wafers are disposed in an open chamber during the rinsing and/or drying process. In the open chamber, the semiconductor wafers are exposed to a large rinse bath and relatively large area of ambient air. Particles that contaminate the wafer during the rinsing and drying processes often come directly from the rinse water and ambient air. Control of the contaminants in the rinsing bath and ambient air in these systems is often difficult and requires rather elaborate filter systems.
The inventors have has recognized that demands for integrated circuit rinsing/drying processes may ultimately require more control and economic efficiency from the rinser/dryer. As such, a substantially new approach to rinsing and drying of the semiconductor wafer has been undertaken which provides greater control of the physical properties of the rinsing and drying fluids. Further, wafers may be rinsed and dried on an individual basis more quickly when compared to the drying of an individual wafer using any of the foregoing processes.
BRIEF SUMMARY OF THE INVENTION
An apparatus for rinsing and drying a semiconductor workpiece in a micro-environment is set forth. The apparatus includes a rotor motor and a rinser/dryer housing. The rinser/dryer housing is connected to be rotated by the rotor motor. The rinser/dryer housing further defines a substantially closed rinser/dryer chamber therein in which rinsing and drying fluids are distributed across at least one face of the semiconductor workpiece by the action of centripetal acceleration generated during rotation of the housing. A fluid supply system is connected to sequentially supply a rinsing fluid followed by a drying fluid to the chamber as the housing is rotated.
In accordance with one embodiment of the apparatus, the rinser/dryer housing includes an upper chamber member having a fluid inlet opening and a lower chamber member having a fluid inlet opening. The upper chamber member and the lower chamber member are joined to one another to form the substantially closed rinser/dryer chamber. The rinser/dryer chamber generally conforms to the shape of the semiconductor workpiece and includes at least one fluid outlet disposed at a peripheral region thereof. At least one semiconductor workpiece support is provided. The support is adapted to support a semiconductor workpiece in the substantially closed rinser/dryer chamber in a position to allow distribution of a fluid supplied through the inlet opening of the upper chamber member across at least an upper face of the semiconductor workpiece through centripetal acceleration generated when the rinser/dryer housing is rotated. The wafer is further positioned by the support to allow distribution of a fluid supplied through the inlet opening of the lower chamber member across at least a lower face of the semiconductor workpiece during the rotation through the action of centripetal acceleration. The at least one fluid outlet is positioned to allow escape of fluid from the rinser/dryer chamber through action of centripetal acceleration.


REFERENCES:
patent: 3727620 (1973-04-01), Orr
patent: 3953265 (1976-04-01), Hood
patent: 4132567 (1979-01-01), Blackwood
patent: 4439243 (1984-03-01), Titus
patent: 4439244 (1984-03-01), Allevato
patent: 4544446 (1985-10-01), Cady
patent: 4664133 (1987-05-01), Silvernail et al.
patent: 4750505 (1988-06-01), Inuta et al.
patent: 4790262 (1988-12-01), Nakayama et al.
patent: 4838289 (1989-06-01), Kottman et al.
patent: 4903717 (1990-02-01), Sumnitsch
patent: 4982215 (1991-01-01), Matsuoka
patent: 4982753 (1991-01-01), Grebinski, Jr. et al.
patent: 5020200 (1991-06-01), Mimasaka
patent: 5032217 (1991-07-01), Tanaka
patent: 5117769 (1992-06-01), DeBoer
patent: 5168886 (1992-12-01), Thompson et al.
patent: 5209180 (1993-05-01), Shoda et al.
patent: 5222310 (1993-06-01), Thompson et al.
patent: 5224503 (1993-07-01), Thompson
patent: 5224504 (1993-07-01), Thompson et al.
patent: 5349978 (1994-09-01), Sago et al.
patent: 5361449 (1994-11-01), Akimoto
patent: 5421893 (1995-06-01), Perlov
patent: 5431421 (1995-07-01), Thompson et al.
patent: 5445172 (1995-08-01), Thompson
patent: 5513594 (1996-05-01), McClanahan et al.
patent: 5551986 (1996-09-01), Jain
patent: 5591262 (1997-01-01), Sago
patent: 5666985 (1997-09-01), Smith
patent: 5677824 (1997-10-01), Harashima et al.
patent: 5678116 (1997-10-01), Sugimoto et al.
patent: 5718763 (1998-02-01), Tateyama
patent: 5762708 (1998-06-01), Motoda
patent: 5762751 (1998-06-01), Bleck et al.
patent: 5779796 (1998-07-01), Tomoeda
patent: 5815762 (1998-09-01), Sakai
patent: 5845662 (1998-12-01), Sumnitsch
patent: 5860640 (1999-01-01), Marohl et al.
patent: 5868866 (1999-02-01), Maekawa et al.
patent: 5882433 (1999-03-01), Ueno
patent: 5885755 (1999-03-0

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Micro-environment chamber and system for rinsing and drying... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Micro-environment chamber and system for rinsing and drying..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Micro-environment chamber and system for rinsing and drying... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2575907

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.