Methods, well cement compositions and lightweight additives...

Wells – Processes – Cementing – plugging or consolidating

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06601647

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to methods, compositions and lightweight additives for sealing pipe strings in well bores, and more particularly, to such methods, compositions and additives wherein the well bores penetrate formations that readily fracture at low hydrostatic pressures.
2. Description of the Prior Art
Hydraulic cement compositions are commonly utilized in oil, gas and water well completion and remedial operations. For example, hydraulic cement compositions are used in primary cementing operations whereby strings of pipe such as casing and liners are cemented in well bores. In performing primary cementing, a hydraulic cement composition is pumped into the annular space between the walls of a well bore and the exterior of a string of pipe disposed therein. The cement composition is permitted to set in the annular space thereby forming an annular sheath of hardened substantially impermeable cement therein. The cement sheath physically supports and positions the pipe in the well bore and bonds the pipe to the walls of the well bore whereby the undesirable migration of fluids between zones or formations penetrated by the well bore is prevented.
In some well locations, the subterranean zones or formations into or through which wells are drilled have high permeabilities and low compressive and tensile strengths. As a result, the resistance of the zones or formations to shear are low and they have low fracture gradients. When a hydraulic cement composition is introduced into a well bore penetrating such a subterranean zone or formation, the hydrostatic pressure exerted on the walls of the well bore can exceed the fracture gradient of the zone or formation and cause fractures to be formed in the zone or formation into which the cement composition is lost. While lightweight cement compositions have been developed and used, subterranean zones or formations are often encountered which have fracture gradients too low for the lightweight cement compositions to be utilized without the formation of fractures and the occurrence of lost circulation problems.
Thus, there are needs for improved lightweight cement compositions for sealing pipe such as casings and liners in well bores which penetrate zones or formations having very low fracture gradients.
SUMMARY OF THE INVENTION
The present invention provides lightweight well cement compositions, additives for use in the compositions and methods of using the lightweight compositions for sealing pipe in well bores penetrating zones or formations having low fracture gradients which meet the needs described above and overcome the deficiencies of the prior art. The methods of this invention basically comprise the steps of providing a lightweight cement composition comprised of a hydraulic cement, water and an additive comprising a suspension of microspheres in water gelled with sodium bentonite. The cement composition is placed into the annulus between a pipe and the walls of a well bore and the sealing composition is allowed to set into a hard impermeable mass.
A lightweight sealing composition of this invention is basically comprised of a hydraulic cement, water and an additive for making the cement composition lightweight. The additive utilized in accordance with this invention is comprised of a suspension of microspheres in water gelled with sodium bentonite.
It is, therefore, a general object of the present invention to provide methods, lightweight well cement compositions and additives for use in cementing pipe in well bores.
Other and further objects, features and advantages of the present invention will be readily apparent to those skilled in the art upon a reading of the description of preferred embodiments which follows.
DESCRIPTION OF PREFERRED EMBODIMENTS
By the present invention, methods, lightweight well cement compositions and additives therefor are provided for sealing pipes in well bores penetrating zones or formations which readily fracture at low hydrostatic pressures. The methods of this invention for sealing a pipe in a well bore penetrating a zone or formation which readily fractures at low hydrostatic pressures is basically comprised of providing a lightweight cement composition comprised of a hydraulic cement, water and an additive comprising a suspension of microspheres in water gelled with sodium bentonite. The lightweight cement composition is placed into the annulus between the exterior surfaces of the pipe and the walls of the well bore and the cement composition is allowed to set into a hard impermeable mass therein.
A variety of hydraulic cements can be utilized in accordance with the present invention including those comprised of calcium, aluminum, silicon, oxygen and/or sulfur which set and harden by reaction with water. Such hydraulic cements include Portland cements, slag cements, pozzolana cements, gypsum cements, aluminous cements and silica cements. Portland cements or their equivalents are generally preferred for use in accordance with the present invention. Portland cements of the types defined and described in the
API Specification For Materials And Testing For Well Cements
, API Specification 10, 5
th
Edition, dated Jul. 1, 1990 of the American Petroleum Institute are particularly suitable. Preferred API Portland cements include Classes A, B, C, G and H with Classes G and H being more preferred, and Class G being the most preferred.
The water utilized to form the foamed cement compositions of this invention can be fresh water, unsaturated salt solutions or saturated salt solutions. The water is included in the cement compositions of this invention in an amount in the range of from about 60% to about 250% by weight of hydraulic cement therein.
The additive which is included in the cement compositions of this invention to make the compositions lightweight is basically comprised of a suspension of microspheres in water gelled with sodium bentonite. While various microspheres can be utilized, fly ash microspheres are preferred for use in the present invention. Particularly suitable such fly ash microspheres are commercially available from Halliburton Energy Services, Inc. of Duncan, Okla. under the tradename “SPHERELITE™”. Another type of microspheres that can be used is synthetic hollow glass microspheres commercially available from Minnesota Mining and Manufacturing Company (3M™) under the tradename “SCOTCHLITE™”. These very low density microspheres are formed of a chemically stable soda-lime borosilicate glass composition which is non-porous. The microspheres used are included in the water gelled with sodium bentonite in a general amount in the range of from about 30% to about 100% by weight of the water. Preferably, the microspheres are included in the gelled water in an amount of about 67% by weight of the water therein. The sodium bentonite hydrates in the water and forms a stable gel in which the microspheres do not float. The sodium bentonite is included in the water in an amount in the range of from about 1% to about 4% by weight of the water, preferably an amount of about 2% by weight of the water.
As will be understood by those skilled in the art, various conventional additives can be included in the lightweight sealing compositions of this invention including, but not limited to, set retarders, set accelerators, fluid loss control additives and dispersants.
A preferred method of this invention for sealing pipe in a well bore penetrating a zone or formation which readily fractures at low hydrostatic pressures is comprised of the steps of: (a) providing a lightweight cement composition comprised of a hydraulic cement, water and an additive comprising a suspension of microspheres in water gelled with sodium bentonite; (b) placing the cement composition between the exterior surfaces of the pipe and the walls of the well bore; and (c) allowing the cement composition to set into a hard impermeable mass.
A more preferred method of the present invention for sealing pipe in a well bore penetrating a zone or formation which readily fractures a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods, well cement compositions and lightweight additives... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods, well cement compositions and lightweight additives..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods, well cement compositions and lightweight additives... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3090882

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.