Chemistry: molecular biology and microbiology – Process of mutation – cell fusion – or genetic modification – Introduction of a polynucleotide molecule into or...
Reexamination Certificate
1995-06-02
2001-06-26
Yucel, Remy (Department: 1636)
Chemistry: molecular biology and microbiology
Process of mutation, cell fusion, or genetic modification
Introduction of a polynucleotide molecule into or...
C435S440000, C435S456000, C435S458000, C435S325000, C435S355000, C435S372000
Reexamination Certificate
active
06251675
ABSTRACT:
1. FIELD
The invention concerns the field of viral gene expression, more particularly the phenotypic expression of the rex (regulator of virion-protein expression) gene of HTLV-I and its equivalents in other retroviral species, such as rev of HIV-1.
2. BACKGROUND
Viruses, particularly human retroviruses like the human immunodeficiency virus type 1 (HIV-1) or the human leukemia virus type I (HTLV-I) are the causative agents for very serious diseases. This is in the case of HIV-1 the Acquired Immune Deficiency Syndrome (AIDS) and in the case of HTLV-I Adult T-cell Leukemia (ATL) as well as noncancerous conditions known as Tropical Spastic Parapesis. HTLV-II is etiologically related to some cases of variant T-cell hairy cell leukemia. Both virus groups are dividing their replication cycle, similarly to the DNA viruses, in an “early” and a “late” stage of gene expression. The “early” phase of gene expression is characterized by the expression of the regulatory proteins, while in the “late” phase the structural proteins are synthesized.
The HTLV-I genome is coding for an activator of viral transcription termed Tax. The equivalent of Tax in HIV-1 is termed Tat. Tax and Tat appear to act primarily on the retroviral LTR (long terminal repeat) for viral gene expression. In addition, HTLV-I encodes an activator of viral structural gene expression termed Rex. A functional Rex protein is responsible for the increased transport of unspliced viral mRNA out of the nucleus into the cytoplasm of the infected cell. There these mRNA species are constituting the viral genome and encoding the structural proteins. Human Immunodeficiency Virus Type 1 (HIV-1) encodes a homologous protein termed Rev. The rev gene product is, as Rex in the HTLV-I system, absolutely required for the expression of the HIV-1 structural proteins.
The underlying reason for this is that the product of the rev gene (and its equivalents in other viral species) is having a dramatic effect on the selection of the splicing mode for the viral mRNA transcripts in infected cells. This effect is achieved in the case of Rev and Rex by posttranscriptional regulation, namely by enhancement of the transport into the cytoplasm of full-length mRNA transcripts, whereby expression of viral structural proteins such as Gag and Env for HIV-1 is initiated and expression of regulatory proteins is concomitantly suppressed (see e.g. for Rex M. Hidaka et al.,
EMBO J
. 7 [1988] 519) or modulated (see e.g. for Rev M. H. Malim et al.,
Nature
335 [1988] 181). Thus Rev is not required for the expression of the fully spliced HIV-1 mRNAs encoding the viral regulatory proteins, including Tat and Rev.
In HIV-1 the selectivity of the induction noted above is due to an RNA target sequence required for Rev function termed Rev Response Element (RRE). RRE coincides with a large, 234 nucleotide RNA secondary structure present within the HIV-1 env gene. The equivalent structure in HTLV-I is termed Rex Response Element (RexRE or RRX). Rev appears to be the first protein which has been shown to regulate the nuclear export of RNA in a sequence specific manner.
Taking Rex as an illustration, the complete function of the Rex protein in regulating expression of the HTLV-I gal and env genes requires at least three functionally distinct component activities: nuclear and nucleolar localization, i.e. the capacity to be transported from the cytoplasmic site of synthesis of all proteins to the nucleus and there to be concentrated in the nucleolar region; specific recognition (directly or indirectly) of the RexRE (RRX) sequence in viral RNAs; and Rex effector activity, the presently still unknown activity of this regulatory protein which actually mediates export from the nucleus to the cytoplasm of partially spliced viral mRNA species that include the RexRE sequence.
Regarding the structural locations in the Rex protein where these component activities of the complete Rex function reside (i.e. the functional domains), all that was known prior to the present invention is that a positively charged peptide domain in the first twenty amino acids at the amino terminus of Rex is required for nucleolar localization (H. Siomi et al.,
Cell
55 [1988] 197-209).
As mentioned above both the rex gene product for HTLV-I and the rev gene product for HIV-1 are required for replication of the virus (see e.g. for HIV E. Terwilliger et al.,
J. Virol
. 62, [1988] 655). The crucial importance of Rex and Rev is underscored by the fact that in spite of their different primary structures, they are related functionally, and HTLV-I Rex is able to exert its function in the other viral species, i.e. in HIV-1 (L. Rimsky et al.,
Nature
335 [1988] 738): thus even though
Rev and Rex do not share any significant homology on the nucleotide as well as on the amino acid level,
the nucleotide sequences and stem and loop structures of the RRE differ from those of the RexRE (RRX) in HTLV-I,
computer-generated prediction of secondary structures of the Rex and Rev proteins reveal no significant similarities and
the Rex protein does not appear to bind to the same part of the RRE as the Rev protein does,
it is nevertheless possible to substitute the Rev protein by the Rex protein in the HIV-1 system, and further, it has very recently been found that HTLV-I Rex and HIV-1 Rev can substitute for HIV-2 Rev (Rev2) and that HTLV-I Rex can also substitute for the analogous HTLV-II regulatory protein. This complementation is sufficient to rescue e.g. a rev-deficient HIV-1 provirus providing functional Rex protein in trans. On the other hand the reverse substitution to rescue a rex-deficient HTLV-I provirus by functional Rev protein does not seem to be feasible. Thus there is no complete symmetry in this respect. The basis for this lack of reciprocality is not yet understood, but it probably relates to differences in the functional aspects of these proteins that are required for target RNA sequence recognition.
Mutations in regulatory proteins may yield a gene product with a dominant negative phenotype over the wild-type function (I. Herskowitz,
Nature
329 [1987] 317). Dominant negative mutant proteins, known as trans-dominant repressors, a small group of which have been discovered recently in several unrelated viruses, represent a novel class of anti-viral agents. In genetic analyses, negative mutations are those which cause a diminution or loss of a function of a gene. Dominant negative mutations are those that prevent other copies of the same gene, which have not been mutated (i.e. which have the wild type sequence), from functioning properly. On the other hand recessive negative mutations do not so inhibit wild-type counterparts. Further, some dominant mutations inhibit wild-type genes only when the mutant and wild-type genes are located on the same chromosome (DNA or RNA molecule). In this case the inhibiting mutation is said to be “cis-acting”. Alternatively, a dominant mutation may inhibit the corresponding wild-type gene even when located on a separate chromosome. This type is classified as a “trans-acting” dominant mutation or, more simply, as a transdominant mutation.
A few of these so-called transdominant genes have been described, concerning genes for eukaryotic or Herpes virus transcription factors (I. A. Hope and K. Struhl,
Cell
46 [1986] 885; R. Gentz et al.,
Science
243 [1989] 1695; S. J. Triezenberg et al.,
Gen
. &
Devel
. 2 [1988] 718; A. D. Friedman et al.,
Nature
335 [1988] 452). Thus, when overexpressed some deletion mutants of the Herpes simplex virus trans-activator VP16 inhibit VP16 function, thereby precluding replication of HSV-1 in normally permissive cells. As regards retroviruses, transdominant mutants have also been described, e.g. for the Tax protein of HTLV-II (W. Wachsman et al.,
Science
235 [1987] 674) and, after the priority date for the present invention, for the HIV-1 tat (M. Green et al.,
Cell
58 [1989] 215) and gag (D. Trono et al.,
Cell
59 [19
Duke University
Furman Diane E.
Yucel Remy
LandOfFree
Methods utilizing mutant rev genes encoding transdominant... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Methods utilizing mutant rev genes encoding transdominant..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods utilizing mutant rev genes encoding transdominant... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2505354