Communications: electrical – Wellbore telemetering or control – Including detail of subsurface signal storage
Reexamination Certificate
2000-09-22
2003-10-07
Horabik, Michael (Department: 2635)
Communications: electrical
Wellbore telemetering or control
Including detail of subsurface signal storage
C340S855600, C367S117000, C367S034000, C367S005000, C181S122000
Reexamination Certificate
active
06630890
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a borehole logging system and to a communication system for use in such logging systems. In particular, the invention concerns borehole logging systems which include a number of discrete logging sondes connected together to form an array, for example a borehole seismic array tool or to muliple measuring entities connected to form a string.
BACKGROUND OF THE INVENTION
In the logging of boreholes, one method of making measurements underground comprises connecting one or more tools to a cable connected to a surface system. The tools are then lowered into the borehole by means of the cable and then drawn back to the surface (“logged”) through the borehole while making measurements. The conductors of the cable provide power to the tool from the surface and provide a route for electric signals to be passed between the tool and the surface system. These signals are for example, tool control signals which pass from the surface system to the tool, and tool operation signals and data which pass from the tool to the surface system.
A schematic view of a prior art telemetry system for use in logging boreholes is shown in FIG.
1
. The system shown comprises a digital telemetry module DTM which is typically located at the surface, a cable C, a downhole telemetry cartridge DTC at the head of a tool string which includes a number of downhole tools T
1
, T
2
, . . . each containing a respective interface package IP
1
, IP
2
, . . . through which they are in communication with the DTC via a fast tool bus FTB. This system is configured to handle data flows in opposite directions, i.e. from the tools, via the respective IPs and FTB, to the DTC and then to the DTM over the cable (“uplink”), and the reverse direction from the DTM to the DTC and tools over the same path (“downlink”). Since the principal object of the system is to provide a communication path from the tools to the surface so that data acquired by the tools in use can be processed and analysed at the surface, the protocol used favours the uplink at the cost of the downlink to optimise data flow from the tools. The communication path is split into two parts, the cable C and the tool bus FTB, and operation of these two are asynchronous to each other. In the FTB, the uplink and downlink both comprise biphase modulation using a half duplex systems of identical instantaneous data rate and frequency synchronised to a clock in the DTC. Both uplink and downlink are half duplex. A suitable protocol for implementing such a system is described in U.S. Pat. No. 5,191,326 and U.S. Pat. No. 5,331,318, the contents of which are incorporated herein by reference. The FTB signal path is typically constituted by a pair of coax cables or a twisted pair conductor running along the length of the tool string.
The tools T
1
, T
2
. . . in the tool string are typically a series of sondes which make physical measurements of the formation surrounding the borehole, for example electrical, nuclear and acoustic measurements. The sondes are usually connected together to form a rigid tool string with electrical connectors permitting data and power connection between or through the sondes. In use, the operator must configure the FTB from the surface system to indicate the number of nodes (i.e. number of tools or sondes) such that the system can allocate addresses for each node. Once this is set, it is fixed and must be completely reconfigured to change the number of nodes.
Certain borehole tools are commonly found in the form of arrays, in which a number of similar (or identical) sondes which make the same measurement are connected together. Such an approach is often found in borehole seismic logging tools and examples can be found in SEISMIC APPLICATIONS Vol. 1, CROSSWELL SEISMOLOGY & REVERSE VSP by Bob A. Hardage, Geophysical Press Ltd., London 1992. Because of the necessity to couple the measurement sondes closely to the borehole wall in such cases in order to improve the acoustic detection ability, and the difficulty of achieving such coupling with a very long tool string, it is often proposed to join the sondes together with lengths of flexible cable, often called “bridles”. The Array Seismic Imager ASI tool of Schlumberger, the SST 500 tool of CGG and other examples of such “array” or “multi-level” tools are found in U.S. Pat. No. 5,157,392.
One problem encountered with multi-level borehole seismic tools is that the large quantity of data recorded for each shot is greater than can be handled by current wireline telemetry systems. The tool described in U.S. Pat. No. 5,157,392 attempts to overcome this problem by providing memory in each sonde and in a downhole cartridge which is connected to the logging cable. In use, a signal is sent from a surface system to the cartridge to instruct activation of the measuring devices in each sonde for a predetermined time after the signal is received. This signal is coordinated with the firing of the surface source so that the sondes are active when the signal arrives. In order to overcome the limitations of the telemetry system, the sondes and the downhole cartridge are provided with buffers or memories which store the recorded signals. The stored signals are then telemetered to the surface over the logging cable when the sensors are not recording and when the tool is being moved in the borehole.
U.S. Pat. No. 5,585,556 describes a measurement while drilling system for making seismic measurements. In order to overcome the limitations of the telemetry system, signals are recorded downhole when drilling has stopped and a surface source is activated and stored. Some processing is performed on these signals and the processed data transmitted to the surface. The downhole tool must be retrieved in order to download all of the stored signals. In order to operate, the system is described as having synchronised clocks in the surface and downhole systems.
The systems described above have certain limitations. It is not possible to acquire data continuously and the surface system must be closely associated with the source firing system. This is often not possible, especially in marine environments. It is also not possible with this system to decide after the fact which data is to be telemetered to the surface and which can be discarded.
SUMMARY OF THE INVENTION
The present invention provides novel methods for recording data in borehole logging systems, novel borehole logging systems and novel borehole seismic logging tools and systems.
A method of recording data in a borehole logging system according to a first aspect of the invention comprises recording data at multiple measuring elements (such as seismic sensors) in a downhole system in a substantially continuous manner; storing the recorded data in a memory downhole; determining a data time window and a data sampling rate; and communicating, from the memory to the surface system, data falling in the determined time window and sampled at the determined sampling rate.
Preferably, time stamp data is associated with the recorded data in the memory. The time stamp data can be generated with a clock in the downhole system. In such a case, a synchronisation signal can be generated with a clock in the surface system, the synchronisation signal being sent to the downhole system and used to synchronise the clock in the downhole system with the clock in the surface system. The clock in the surface system can be synchronised with a time signal from a GPS system.
The time window and sampling rate can be communicated to the downhole system in a signal from the surface system. Alternatively, the time window and sampling rate can be determined in response to a detected event.
It is also convenient to transmit to the surface system data relating to the operating of the signal source which creates the signals sensed downhole.
The downhole system preferably includes a downhole telemetry cartridge and a sensor network cartridge, the recorded data being stored in the sensor network cartridge and the data being communicated to the surface via the
Endo Tatsuki
Mathison David
Takeda Jiro
Horabik Michael
Jeffery Brigitte
Nava Robin
Ryberg John
Schlumberger Technology Corporation
LandOfFree
Methods, systems and tools for borehole logging does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Methods, systems and tools for borehole logging, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods, systems and tools for borehole logging will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3124095