Methods, systems and computer program products for...

Electrical computers and digital processing systems: multicomput – Computer network managing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C713S502000

Reexamination Certificate

active

06272539

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to collaborative applications, and more particularly, to estimating a user's overall network delay when using collaborative applications.
BACKGROUND OF THE INVENTION
Over the last decade, data communication networks in general, and the Internet in particular, have gained continually increasing acceptance as a mass communications media. This recognition of data communication networks as viable media for communication, along with the proliferation of hardware capable of providing access to such networks to a broad base of users, has created opportunities for vastly expanded use of data communication networks such as the Internet for a wide range of new or expanded commercial purposes.
By way of background, a data communication network refers to a grouping of resources which interconnect and provide for communications between various computers, telephones, and other network users that are generally located at geographically separate locations. Such networks can range from small local area networks interconnecting computers within a building to large distributed networks spanning countries or continents. Data communication networks are generally comprised of a group of switches, which are referred to as nodes, network users, who reside at or are electronically connected to the nodes, and a plurality of transmission links which interconnect the nodes. The nodes serve to provide users access to the network, and provide means for routing data transmitted across the network. The transmission links which interconnect these nodes carry the communications signals, and may comprise one or more different types of communications media such as wire, cable, radio, satellite or fiber optic communications links.
As indicated above, both the size and number of data communication networks have proliferated in recent years, with the Internet serving as the most notable example of the trend toward distributed computing and information sharing. The Internet is a worldwide decentralized network of computers having the ability to communicate with each other, thereby allowing users to communicate and otherwise interact across multiple networks. The World Wide Web (“Web”) was created in the early 1990's, and is comprised of “server” computers which are connected to the Internet (hereinafter “servers”) with stored hypertext documents or Web pages. These Web pages are accessible by client devices (hereinafter “clients”) using browser programs (hereinafter “browsers”) such as Netscape Navigators® (Netscape Communications Corporation, Mountain View, Calif.) and Internet Explorer® (Microsoft Corporation, Redmond, Wash.). Browsers typically provide a graphical user interface (“GUI”) for retrieving and viewing server Web pages.
In many respects, the Internet and other data communication networks are well-suited for business communications. For instance, the Internet allows for efficient real-time exchange of information such as documents, photographs, graphics, audio files, video clips and other data intensive communications in a manner that is often faster, cheaper and of better quality than traditional business communications media. Furthermore, the Internet allows for personalized and/or adaptive information exchange which is not possible with many conventional forms of communications such as television and radio. However, while the Internet and other data communication networks have many advantages over traditional business communications media, it is also a relatively new communications media which many potential users may be hesitant to try and which most actual users may not fully understand. Thus, these networks may not fulfill their potential as a media for business communications, as these potential and actual users may not have confidence in these networks to the same degree that they have confidence in traditional business communications media.
By way of example, when telephone users experience a poor connection, which may result from equipment failure, poor weather, atmospheric effects, or other interference, the volume typically drops precipitously or static appears on the line and the parties to the call realize that they have a bad connection. Given their familiarity with the technology, however, telephone users experiencing such a bad connection understand that it is likely an isolated incident and will hang up and reinitiate the call. Moreover, telephone users are generally forgiving when these situations occur and continue to use the telephone with expectations that such poor connections will, at most, be an occasional occurrence. In contrast, while user expectations for on-line communications generally are high, most users have limited understanding regarding when and why performance will differ. As such, most users typically cannot distinguish between a poor connection (e.g., a connection disrupted by equipment failures) and, for example, a connection carrying data intensive communications (such as graphics) that may exhibit what on the surface appears to be degraded communication quality. Thus, inexperienced users may question the reliability of data communication networks because they fail to understand how distance, processor speed, transmission link capacity, the type of communication (e.g., text versus video) and other client-server and network parameters affect the performance of on-line communications.
This lack of user sophistication may have the potential to inhibit the use of data communication networks for business communications, as new and inexperienced users whose expectations are not met may conclude that on-line communications are not sufficiently reliable for business communications. This is particularly true because often the Internet and other data communication networks provide no feedback regarding either the cause of, or the probability of a solution to, what the user perceives as a “glitch” or problem with the network connection. Thus, many on-line communication users may reject the Internet for such business communications, such that these networks do not reach their full potential as a media for business communications. Accordingly, there exists a need for ways to improve the confidence of user's of data communication networks in the reliability of such networks as a media for business communications.
SUMMARY OF THE INVENTION
In view of the above limitations associated with efforts to expand the use of data communication networks for business communications, it is an object of the present invention to provide methods, systems and computer program products which serve to increase the confidence of data communication network users in the reliability of such networks.
Another object of the present invention is to provide methods and systems for providing data communication network users with network information.
It is still a further object of the present invention to provide methods and systems which provide data communication network users with network information in a readily understandable format. Other objects, features and advantages of the present invention will become apparent upon reading the following detailed description and appended claims and upon reference to the accompanying drawings.
The above-mentioned objects of the present invention are provided by methods, systems and computer program products which determine and visually represent network information to users of the network. Specifically, these methods, systems and computer program products estimate overall network delay information for one or more users of the network, and periodically provide this overall delay information to network users via the graphical user interface at the users' computer monitors.
In one embodiment of the methods of the present invention, an estimated overall delay value associated with a user's communications with a site in a network is determined, and the user is then provided a visual representation of this estimated overall delay value. The estimated overall delay value may be det

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods, systems and computer program products for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods, systems and computer program products for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods, systems and computer program products for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2468179

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.