Fishing – trapping – and vermin destroying – Vermin destroying
Reexamination Certificate
1995-06-07
2002-04-16
Rowan, Kurt (Department: 3643)
Fishing, trapping, and vermin destroying
Vermin destroying
C043S132100
Reexamination Certificate
active
06370812
ABSTRACT:
BACKGROUND OF THE INVENTION
Subterranean termites most often enter structures from the surrounding soil to feed on wood, or other cellulosic material, of the structure and its contents. If unchecked, termites can cause considerable damage. As a result, efforts to erect physical or chemical barriers to prevent the entrance of termites into a structure or to exterminate the termites after they have invaded a structure have proven a considerable expense to the public (Su, N. Y., J. H. Scheffrahn [1990
] Sociobiol.
17(1):77-94). The cost to control termites in the United States exceeds one billion dollars annually (Mauldin, J. K., S. C. Jones, R. H. Beal [1987]. The International Research Group on Wood Preservation Document No. IRG/WP/1323).
Subterranean termites construct an extensive foraging gallery beneath the soil surface. A single colony may contain several minion termites with foraging territory extending up to 300 feet (Su, N. Y., R. H. Scheffrahn [1988
] Sociobiol.
14(2):353-359). Since subterranean termites are a cryptic creature, their presence is not normally known until after some damage, foraging tubes, or live termites such as swarmers, are found. Some subterranean termites are known to forage beneath an object on the soil surface (Ettershank, G., J. A. Ettershank, W. G. Whitford [1980
] Environ. Entomol.
9:645-648).
Currently, there are two basic approaches for the control of subterranean termites: preventive control and remedial control. In some of the United States, it is mandatory that the soil underlying the foundation of newly constructed buildings be pre-treated with a pesticide (also referred to herein as termiticide) to prevent termite infestation. Pesticide is typically sprayed over and into the soil prior to construction. This pre-construction treatment produces a horizontal barrier beneath the building. Because of the lack of communication between pesticide applicator and construction workers, the barrier often loses its continuity during the construction. Moreover, the currently available soil termiticides tend to lose their biological activity after five or more years to the extent that the treated soil is no longer effective against termite invasion. Established termite colonies in the soil may then invade the structure if additional chemical is not applied beneath and around the structure.
When a house or other building is infested by subterranean termites, efforts are made to create a continuous barrier beneath the building in the soil where the subterranean termites are provided access to the building. A common method of creating this barrier is to introduce termiticide around a building foundation by injection into soil underlying concrete foundations, drenching the soil surrounding the building perimeter, or a combination of both. This type of post-construction treatment is labor-intensive and may not adequately produce a continuous barrier (Frishman, A. M., B. L. Bret [1991
] Pest Control
59(8):48, 52, 54, 56; Frishman, A. M., A. St. Cyr [1988
] Pest Control Technology
16(4):33, 34, 36).
Other remedial treatments include spot treatments such as dusting or injecting termiticides within the walls of the building. Robert Verkerk has described arsenic trioxide dust treatment using termite lures (Verkerk, R. [1990
] Building Out Termites
, Pluto Press Australia Limited, P.O. Box 199, Leichhardt, NSW 2040). Verkerk describes the use of stakes or blocks of termite susceptible timber to lure termites after the stakes or blocks have been placed near a known termite problem. Once termite activity is observed, arsenic trioxide is injected. Alternatively, a portion of the termites may be dusted with arsenic trioxide.
Most spot treatments are done to stop existing termite infestations at a particular area in a structure but generally affect only a small portion of the subterranean termite population, i.e., those termites which come into direct contact with the pesticides. Because of the extensive foraging populations and expansive territory of subterranean termite colonies, the vast majority of the termite population is not affected by such spot treatments.
U.S. Pat. No. 3,940,875 describes a method, however impractical, for dispensing termite poison in the soil in an attempt to extend the life of the barrier type treatment such that the presence of termites is signalled by the release of an odor when the termites feed on the poison. The '875 patent also describes a termite-edible container which gives off an odor when eaten by a termite. In addition to the '875 patent and the Verkerk article referenced above, other publications describe the use of termite-edible materials as components of schemes to control termites. For example, Japanese patent application Nos. 61-198392 and 63-151033 describe wooden vessels specifically designed to “attract” termites as part of a monitoring procedure. The 61-198382 application describes a vessel preferably made from pine or cedar, used in an attempt to attract termites. The 63-151033 application also uses a wood attractant to entice termites. In the 63-151033 application, the termites are further exposed to a toxicant which is then presumably carried back to the nest in hopes of killing the queen via trophallaxis or food exchange. Neither Japanese application provides any data establishing that the described process actually has any impact on termite populations. Furthermore, there is no indication that it is possible to “attract” termites at all. These methods have further important disadvantages. For example, the wooden inducing body will be subjected to fungal decay before termite attack, especially in moistened soi. Thus, frequent replacement of the inducing body is needed during the monitoring period. Further, damage to the inducing body can result in the penetration of the termiticide into the ground. This is not environmentally acceptable.
One termite control method comprises placing a highly toxic material, such as an arsenic-containing dust, at a site of infestation in the hope that this will directly control an effective number of termites at the site and also other termites back in the colony. However, this method relies on pumping toxic dust into a termite tunnel and depositing relatively large quantities of dust.
Elaborate schemes of pipes to convey liquid termiticides under and surrounding buildings have also been proposed for termite control. It has been suggested that these liquid termiticides may be dispensed into the soil surrounding and below the building through these pipes to provide a continuous barrier to the incursion of termites. This method requires a large quantity of termiticides in order to saturate the soil surrounding the building.
U.S. Pat. No. 5,027,546 describes a system intended for use on above ground termites, i.e., drywood termites, which controls termites by freezing with liquid nitrogen. Although the liquid nitrogen is essentially non-toxic in that no toxic residues persist, it is hazardous to use and the method is a spot treatment and will not affect the majority of termites. U.S. Pat. No. 4,043,073 describes a method which attempts to circumvent the problem of repeated application of pesticide. The described method functions by “encapsulating” the insecticide, thus making it more persistent. The overt use of pesticides and their persistence in the environment are not remedied by this system. Another proposed system which fails to alleviate the problem of transferring insecticide directly into the soil is U.S. Pat. No. 3,624,953. This method employs a reservoir of insecticide wherein the vapors of the insecticide are permitted to permeate the soil surrounding the reservoir. Thus, exposure of the environment with toxic substances is not avoided by using this method.
Toxicants which have less environmental effect and which show activity against termites are known (Su, N. Y., M. Tamashiro, M. Haverty [1987
] J. Econ. Entomol.
80:1-4; Su, N. Y., R. H. Scheffrahn [1988
] Florida En
Burns Kevin
Su Nan-Yao
Thoms Ellen M.
Dowelanco
McDonnell & Boehnen Hulbert & Berghoff
Rowan Kurt
LandOfFree
Methods, systems and baits for detecting and controlling... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Methods, systems and baits for detecting and controlling..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods, systems and baits for detecting and controlling... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2927106