Methods, systems, and associated implantable devices for...

Surgery – Diagnostic testing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C128S903000, C128S904000, C128S920000, C600S301000, C600S361000, C600S407000, C600S326000, C424S009100, C424S422000

Reexamination Certificate

active

06402689

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to diagnostic medical instruments and procedures, and more particularly to implantable devices and methods for monitoring physiological parameters.
BACKGROUND OF THE INVENTION
The availability of a system and device capable of monitoring changes within any cell population of interest would be an important addition to the cancer treatment armamentarium and one that will fill a need by making available more precise knowledge of the most sensitive time(s) for treating a tumor cell population. This vital information could aid in the delivery of highly specific individual treatment regime rather than the empirical and somewhat generalized treatment plans of today.
The in vitro study of malignant cell populations have established important general principles by which clinical treatment protocols are developed. These principles have established differences between malignant and normal cell populations and have been employed in the treatment of malignant disease. There have been many attempts to exploit these differences, both in pre-clinical and clinical studies, in order to attempt to obtain total tumor cell kill and improved cure rates. One of the major obstacles in achieving this goal has been the difficulty in minimizing normal tissue toxicity while increasing tumor cell kill (therapeutic index). Thus, presently, most treatment strategies employ an empirical approach in the treatment of malignant disease. That is, the timing of delivery and dose of cytotoxic agents are guided more by the response and toxicity to normal tissue than by the effects on the malignant cell population. A major deficiency of this empirical approach is the lack of an efficient method or technique to provide accurate information on the dynamic changes during treatment (which can be extended over a long period of time) that occur within a malignant cell population. Making this invaluable information available to attending physicians can allow clinicians to exploit the revealed differences between malignant and normal cells, and hence improve the treatment procedures, to achieve better outcomes.
Much of the research in tumor biology has been involved in exploring the cellular, biochemical, and molecular difference between tumor and normal cells in order to improve the therapeutic index. Early cell kinetic studies revealed that cancer cells do not divide faster than normal cells, but rather a larger proportion of the cell population is dividing (Young et al., 1970). At that time, the failure to cure more tumors was attributed to a variation in growth characteristics. In the 1980's, it was proposed that these failures were due to development of resistance of tumor cells through mutations of an unstable genome (Goldie et al., 1984). Later studies suggested that the mechanism for tumor cell survival rests on expression of a gene that codes for a specific protein that expels or extrudes the cytotoxic agents from the cell (Chaudhary et al., 1992). More recently, it has been suggested that resistance is related to dysregulation of the cell cycle which alters the rates of cell growth (Lowe et al., 1994). Additional factors associated with failure to eliminate or effect improved cure rate include hypoxic cell populations, cell proliferation variants, cell differentiation agents, and cell cycle sensitive stages. The ability to monitor these changes during and following any treatment could offer a more precise knowledge of the most sensitive portions of any cell population and aid in the delivery of a more individualized and less empirical or generalized treatment program.
There have been a number of attempts to study certain of the dynamic changes occurring within a cell population, but these attempts generally lack the ability to monitor the changes on a real time basis. Indeed, these methods typically provide information at one point in time and most are designed to provide information on one particular function or parameter. In addition, most of the conventional methods can be expensive as well as time consuming. This can be problematic for patients undergoing extended treatment periods typical of radiation and or drug or chemotherapy, especially when it is desirable to follow dynamic changes both during an active treatment and subsequent to the active treatment throughout a treatment period.
The most reliable current monitoring technique is the biopsy. A biopsy can be taken at any time and can provide significant amount of information. However, it is impractical to biopsy each day and, even if one could, the time delay created in performing the various tests on the sample means that the information received by the physician is not an accurate representation of the patient's current condition. In addition to biopsy material, the radiological techniques of NMR and PET scanning can obtain, respectively, specific biological (cell cycle phase) and physiological (phosphorus) information, but both are sufficiently expensive that repetitive or daily information is rarely available. The radioactive labeling of specific antibodies or ligands is another available technique, but this method has many of the same problems noted above with the other assays.
In addition, over time, tumors progress through periods wherein they are less robust and, thus, potentially more susceptible to treatment by radiation or drug therapy. Providing a monitoring system which can continuously or semi-continuously monitor and potentially identify such a susceptible condition could provide welcome increases in tumor destruction rates. Further, especially for regionally targeted tumor treatment therapies, it can be difficult to ascertain whether the desired dose was received at the tumor site, and if so received, it can be difficult to assess its efficacy in a relatively non-invasive manner. Thus, there is a need for a monitoring system which can quantify and/or assess the localized or regional presence of a target drug.
Although much of the particular tumor-specific and/or internal systemic information which may definitively identify the most vulnerable tumor stage and, thus, the preferred active treatment period, is still relatively unsettled (as is the ultimate definitive cure or treatment protocol), various researchers have proposed several potentially important physiological and/or biological parameters such as oxygenation, pH, and cell proliferation which may relate to tumor vulnerability or susceptibility, and thus impact certain treatment strategies.
For example, in the article “Oxygen tension measurements of tumors growing in mice,” it is proposed that it may be helpful to assess hypoxia in tumors during treatment. Adam et al., Int. J. Radiation Oncology Biol. Phys., Vol. 45, 1998, pp. 171-180. In addition, tumor hypoxia has been proposed to have an impact on the effectiveness of radiation therapy. See Seminars in Radiation Oncology, Vol. 8, 1998, pp. 141-142. Similarly, the authors of “Development of targeting hyperthermia on prostatic carcinoma and the role of hyperthermia in clinical treatment” note that there is a need for a way to assess temperature at the site of the tumor during therapy. Ueda et al., Jpn. J. Hyperthermic Oncol., Vol. 15 (supplement), 1999, pp. 18-19. Moreover, Robinson et al. opines that it is important to know the tumor oxygenation level and blood flow. See Robinson et al., “MRI techniques for monitoring changes in tumor oxygenation in blood flow,” Seminars in Radiation Oncology, Vol. 8, 1998, pp. 197-207. Unfortunately, tumor oxygenation can vary and there is evidence to suggest that tumor oxygenation is in a continuous state of flux. See Dewhirst, “Concepts of oxygen transport at the microcirculatory level, ” Seminars in Radiation Oncology, Vol. 8, 1998, pp. 143-150. This flux makes a dynamic monitoring method important for identifying when the tumor oxygenation level is such that a more active treatment strategy may be desired. In addition, tumor pH has been suggested as an exploitable parameter for drug design for tumor treatments. See Leo E. Gerweck, “Tumo

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods, systems, and associated implantable devices for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods, systems, and associated implantable devices for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods, systems, and associated implantable devices for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2920726

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.