Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving antigen-antibody binding – specific binding protein...
Reexamination Certificate
2001-04-16
2004-12-28
Chan, Christina (Department: 1644)
Chemistry: molecular biology and microbiology
Measuring or testing process involving enzymes or...
Involving antigen-antibody binding, specific binding protein...
C530S387500, C530S388250
Reexamination Certificate
active
06835545
ABSTRACT:
BACKGROUND OF THE INVENTON
Diabetes Mellitus (diabetes) is a leading cause of morbidity and mortality in the adult population. This is primarily because diabetic patients tend to develop vascular complications that involve the kidneys (diabetic nephropathy), the retina (diabetic retinopathy), as well as large and small blood vessels in other organs (macro- and micro-vascular disease) including nerves (diabetic neuropathy). It is well established that the vascular complications of diabetes are caused by elevated blood glucose levels over long periods of time. Elevated blood glucose levels affect proteins by a process known as glycation. Different “glycated” proteins have been identified in diabetic subjects, including albumin, hemoglobin and others. Measurement of the extent of protein “glycation” of certain proteins is considered a valuable clinical tool to assess long term glycemic control and thereby the efficacy of diabetes treatment.
Glycation, the non-enzymatic attachment of glucose to proteins, is considered a major pathophysiological mechanism causing tissue damage in diabetic subjects. Glycation involves the reaction of glucose and/or other reducing sugars with amino groups in proteins resulting in the formation of a Schiff base or aldimine. This labile adduct can tautomerize via the Amadori rearrangement to the more stable ketoamine. The function of the glycated protein may be impaired, depending on the location of the amino group(s) affected. For example, amino-terminal glycation of the &bgr;-chains of hemoglobin gives rise to the glycated hemoglobins (HbA1) in which responsiveness to 2,3-diphosphoglycerate is decreased and oxygen affinity increased. Glycation of the major thrombin inhibitor of the coagulation system, antithrombin III, decreases its affinity for heparin, and has been postulated to contribute to the hypercoagulable state associated with diabetes.
Hemoglobin glycation and thrombin inhibitor glycation do not account for the vascular complications of diabetes. The mechanism which results in such complications remains unknown.
Currently, protein glycation in diabetic subjects is measured in blood by estimating the amount of glycated hemoglobin (hemoglobin A1c) through a complicated clinical test that requires extraction of a blood sample. Accordingly, there is a need for a simplified and less invasive method for rapid monitoring of protein glycation levels.
SUMMARY OF THE INVENTION
The glycation of the membrane protein known as CD59, a key regulator of the complement system, has been discovered, according to the invention, as being involved in the pathogenesis of the vascular complications of diabetes. Unexpectedly, glycated CD59 has now been identified in human urine. The amount of glycated CD59 in human urine correlates with glycemic control and levels of glycated hemoglobin. Detection of glycated CD59 in the urine of diabetic patients can be used to monitor glycemic control in diabetic patients, and to select subjects for therapy.
The invention, in one aspect, is a method of characterizing the impact of blood sugar levels on abnormal glycation levels in a subject. The method involves obtaining a level of the amount of K41-glycated CD59 from a sample obtained from the subject.
In one embodiment the method involves comparing the level of K41-glycated CD59 to a control. In one embodiment, the sample is a fluid sample. Preferred samples are urine and blood, most preferably, urine. In one embodiment the subject is diabetic.
The subject can be receiving treatment for regulating blood sugar levels.
In one embodiment the level of K41-glycated CD59 is obtained using an agent that binds CD59. Preferably, the agent binds specifically CD59. Most preferably, the agent binds specifically K41-glycated CD59. The level of K41-glycated CD59 can be obtained, for example, using an immunoassay.
The invention in another aspect is a method of evaluating a treatment for regulating blood sugar levels. The method includes obtaining a first level of the amount of K41-glycated CD59 from a first sample obtained from a subject undergoing the treatment for regulating blood sugar levels, and obtaining a second level of the amount of K41-glycated CD59 from a second sample obtained from the subject after obtaining the first level, and comparing the first level to the second level as an indication of evaluation of the treatment. Preferably, the second level is obtained at least one day after the first level. In important embodiments, the second level is a plurality of second levels spaced out over time so that long term treatment can be evaluated and monitored.
In one embodiment the subject is diabetic. The subject can be undergoing treatment with an oral blood sugar regulating agent. In another embodiment, the subject is undergoing treatment with insulin or an insulin analog.
The samples preferably are fluid samples. The samples can be urine or blood, preferably urine. In one embodiment the levels are obtained using an immunoassay.
The invention in another aspect involves a method of selecting a treatment for regulating blood sugar levels in a subject. The method includes obtaining a level of the amount of K41-glycated CD59 from a sample obtained from the subject, and selecting the treatment for regulating blood sugar levels in the subject based at least in part on the level obtained. In one embodiment the subject is diabetic. The subject can already be receiving drug therapy for regulating blood sugar levels. In another embodiment, the subject has not yet received drug therapy for regulating blood sugar levels.
Preferred embodiments, including samples and assays, are as described above.
Another aspect of the invention is a method for determining regression, progression or onset of a condition characterized by abnormal levels of glycated protein. The method involves obtaining a level of the amount of K41-glycated CD59 from a sample obtained from a subject, and comparing the level to a control as a determination of regression, progression or onset of the condition. The sample can be a fluid sample. Preferably, the fluid sample is blood or urine, most preferably urine.
The subject can be diabetic. In one embodiment, the subject is undergoing drug therapy for regulating blood sugar levels.
The level can be obtained using an agent that binds to K41-glycated CD59. Preferably, the agent binds specifically to K41-glycated CD59. In one embodiment the level is obtained using an immunoassay.
Another aspect of the invention is a method of treating a subject to reduce the risk of or the progression of a disorder associated with abnormally high levels of K41-glycated CD59. The method of treatment involves selecting and administering to a subject who is known to have an abnormally high level of K41-glycated CD59 an agent for reducing K41-glycated CD59 levels in an amount effective to reduce K41-glycated CD59 levels. In one embodiment the subject is diabetic. In one embodiment the agent is an oral blood sugar regulating agent and the subject is otherwise free of symptoms calling for any oral blood sugar regulating agent. In one embodiment the agent is insulin or an insulin analog and the subject is otherwise free of symptoms calling for treatment with insulin.
In one embodiment the subject already is being treated with a therapeutic for lowering blood sugar levels and the therapeutic is not the agent. In another embodiment the subject already is being treated with the agent in a previous amount and wherein the effective amount is a higher dose than the previous amount.
Another aspect of the invention is a composition of matter that is isolated K41-glycated CD59. In one embodiment the isolated K41-glycated CD59 represents at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 95% of CD59 in the composition.
Another aspect of the invention is a composition of matter that is pure K41-glycated CD59 or a fragment thereof, wherein the fragment comprises at least 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 contiguous amino acids having a consecutive sequence found in CD59 and including K41, and wherein
Chan Christina
President and Fellows of Harvard College
VanderVegt F. Pierre
Wolf Greenfield & Sacks P.C.
LandOfFree
Methods, products and treatments for diabetes does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Methods, products and treatments for diabetes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods, products and treatments for diabetes will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3288324