Methods of using sibutramine metabolites in combination with...

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Nitrogen containing other than solely as a nitrogen in an...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S258100, C514S283000, C514S334000, C514S394000, C514S424000

Reexamination Certificate

active

06476078

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to methods of using and compositions comprising dopamine reuptake inhibitors such as racemic and optically pure metabolites of sibutramine, optionally in combination with other pharmacologically active compounds.
BACKGROUND OF THE INVENTION
Sibutramine, chemically named [N-1-[1-(4-chlorophenyl)cyclobutyl]-3-methylbutyl]-N,N-dimethylamine, is a neuronal monoamine reuptake inhibitor which was originally disclosed in U.S. Pat. Nos. 4,746,680 and 4,806,570. Sibutramine inhibits the reuptake of norepinephrine and, to a lesser extent, serotonin and dopamine. See, e.g., Buckett et al.,
Prog. Neuro
-
psychopharm.
&
Biol. Psychiat.,
12:575-584, 1988; King et al.,
J. Clin. Pharm.,
26:607-611 (1989).
Racemic sibutramine is sold as a hydrochloride monohydrate under the tradename MERIDIA®, and is indicated for the treatment of obesity.
Physician's Desk References
1494-1498 (53
rd
ed., 1999). The treatment of obesity using racemic sibutramine is disclosed, for example, in U.S. Pat. No. 5,436,272.
Sibutramine appears to have been extensively studied, and reportedly could be used in the treatment of a variety of disorders. For example, U.S. Pat. Nos. 4,552,828, 4,746,680, 4,806,570, and 4,929,629 disclose methods of treating depression using racemic sibutramine, and U.S. Pat. Nos. 4,871,774 and 4,939,175 disclose methods of treating Parkinson's disease and senile dementia, respectively, using racemic sibutramine. Other uses of sibutramine are disclosed by PCT publications WO 95/20949, WO 95/21615, WO 98/11884, and WO 98/13033. Further, the optically pure entantiomers of sibutramine have been considered for development. For example, PCT publications WO 94/00047 and 94/00114 disclose methods of treating depression and related disorders using the (R)- and (S)-enantiomers of sibutramine, respectively.
Sibutramine is rapidly absorbed from the gastrointestinal tract following oral administration and undergoes an extensive first-pass metabolism that yields the primary metabolites, desmethylsibutramine and didesmethylsibutramine, shown below.
It has been reported that desmethylsibutramine and didesmethylsibutramine are more potent in vitro noradrenaline and 5-hydroxytryptamine (5HT; serotonin) reuptake inhibitors than sibutramine. Stock, M. J.,
Int'l J. Obesity,
21(Supp. 1):S25-S29 (1997). It has further been reported, however, that sibutramine and its metabolites have negligible affinities for a wide range of neurotransmitter receptors, including serotonergic (5-HT
1
, 5-HT
1A
, 5-HT
1D
, 5-HT
2A
, 5-HT
2C
), adrenergic, dopaminergic, muscarinic, histaminergic, glutamate, and benzodiazepine receptors. Id.
Sibutramine has a variety of adverse effects. See, e.g.,
Physician's Desk Reference®
1494-1498 (53
rd
ed., 1999). Coupled with the reported benefits and therapeutic insufficiencies of sibutramine, this fact has encouraged the discovery of compounds and compositions that can be used in the treatment or prevention of disorders such as, but not limited to, sexual (e.g., erectile) dysfunction, affective disorders, weight gain or obesity, cerebral function disorders, pain, obsessive-compulsive disorder, substance abuse, chronic disorders, anxiety, eating disorders, migraines, and incontinence. In particular, compounds and compositions are desired that can be used for the treatment and prevention of such disorders and conditions while incurring fewer of the adverse effects associated with sibutramine.
SUMMARY OF THE INVENTION
This invention encompasses methods of treating and preventing disorders and conditions that are ameliorated by the inhibition of neuronal monoamine uptake, which comprise administering to a patient in need of such treatment or prevention a therapeutically or prophylactically effective amount of a neuronal monoamine reuptake inhibitor. Preferred neuronal monoamine reuptake inhibitors are sibutramine metabolites. In specific methods of the invention, the neuronal monoamine reuptake inhibitor is optionally administered in combination with an additional pharmacologically active compound.
Examples of disorders and conditions that are ameliorated by the inhibition of neuronal monoamine uptake include, but are not limited to: eating disorders; weight gain; obesity; irritable bowel syndrome; obsessive-compulsive disorders; platelet adhesion; apnea; affective disorders such as attention deficit disorders, depression, and anxiety; male and female sexual function disorders; restless leg syndrome; osteoarthritis; substance abuse including nicotine and cocaine addiction; narcolepsy; pain such as neuropathic pain, diabetic neuropathy, and chronic pain; migraines; cerebral function disorders; chronic disorders such as premenstrual syndrome; and incontinence.
This invention further encompasses pharmaceutical compositions and dosage forms which can be used, for example, in the methods disclosed herein. Preferred pharmaceutical compositions of the invention comprise a therapeutically or prophylactically effective amount of a sibutramine metabolite and optionally an additional pharmacologically active compound.
DEFINITIONS
As used herein, the term “prodrug” means a derivative of a compound that can hydrolyze, oxidize, or otherwise react under biological conditions (in vitro or in vivo) to provide the compound. Examples of prodrugs include, but are not limited to, derivatives of desmethylsibutramine and didesmethylsibutramine that comprise biohydrolyzable moieties such as biohydrolyzable amides, biohydrolyzable esters, biohydrolyzable carbamates, biohydrolyzable carbonates, biohydrolyzable ureides, and biohydrolyzable phosphates. As used herein, prodrugs of didesmethylsibutramine do not include desmethylsibutramine and sibutramine, and prodrugs of desmethylsibutramine do not include sibutramine.
As used herein, the terms “biohydrolyzable carbamate,” “biohydrolyzable carbonate,” “biohydrolyzable ureide,” “biohydrolyzable phosphate” mean a carbamate, carbonate, ureide, or phosphate, respectively, of a compound that either: 1) does not interfere with the biological activity of the compound but can confer upon that compound advantageous properties in vivo, such as uptake, duration of action, or onset of action; or 2) is biologically inactive but is converted in vivo to the biologically active compound. Examples of biohydrolyzable carbamates include, but are not limited to, lower alkylamines, substituted ethylenediamines, aminoacids, hydroxyalkylamines, heterocyclic and heteroaromatic amines, and polyether amines.
As used herein, the term “biohydrolyzable ester” means an ester of a compound that either: 1) does not interfere with the biological activity of the compound but can confer upon that compound advantageous properties in vivo, such as uptake, duration of action, or onset of action; or 2) is biologically inactive but is converted in vivo to the biologically active compound. Examples of biohydrolyzable esters include, but are not limited to, lower alkyl esters, alkoxyacyloxy esters, alkyl acylamino alkyl esters, and choline esters.
As used herein, the term “biohydrolyzable amide” means an amide of a compound that either: 1) does not interfere with the biological activity of the compound but can confer upon that compound advantageous properties in vivo, such as uptake, duration of action, or onset of action; or 2) is biologically inactive but is converted in vivo to the biologically active compound. Examples of biohydrolyzable amides include, but are not limited to, lower alkyl amides, &agr;-amino acid amides, alkoxyacyl amides, and alkylaminoalkylcarbonyl amides.
As used herein, the term “biohydrolyzable ureide” means a ureide of a compound that either: 1) does not interfere with the biological activity of the compound but can confer upon that compound advantageous properties in vivo, such as uptake, duration of action, or onset of action; or 2) is biologically inactive but is converted in vivo to the biologically active compound.
As used herein, the term “biohydrolyzable phosphate” means a phosphate o

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods of using sibutramine metabolites in combination with... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods of using sibutramine metabolites in combination with..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods of using sibutramine metabolites in combination with... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2944277

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.