Methods of testing/stressing a charge trapping device

Semiconductor device manufacturing: process – Making device or circuit responsive to nonelectrical signal – Responsive to electromagnetic radiation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

07060524

ABSTRACT:
A method of testing/stressing a charge trapping device, such as a negative differential resistance (NDR) FET is disclosed. By operating/stressing a charge trap device during/after manufacture, a distribution of charge traps can be altered advantageously to improve performance.

REFERENCES:
patent: 3588736 (1971-06-01), McGroddy
patent: 3903542 (1975-09-01), Nathanson et al.
patent: 3974486 (1976-08-01), Curtis et al.
patent: 4047974 (1977-09-01), Harari
patent: 4143393 (1979-03-01), DiMaria et al.
patent: 4503521 (1985-03-01), Schick et al.
patent: 4644386 (1987-02-01), Nishizawa et al.
patent: 4806998 (1989-02-01), Vinter et al.
patent: 4945393 (1990-07-01), Beltram et al.
patent: 5021841 (1991-06-01), Leburton et al.
patent: 5023836 (1991-06-01), Mori
patent: 5032891 (1991-07-01), Takagi et al.
patent: 5084743 (1992-01-01), Mishra et al.
patent: 5093699 (1992-03-01), Weichold et al.
patent: 5130763 (1992-07-01), Delhaye et al.
patent: 5162880 (1992-11-01), Hazama
patent: 5189499 (1993-02-01), Izumi et al.
patent: 5311465 (1994-05-01), Mori et al.
patent: 5357134 (1994-10-01), Shimoji
patent: 5390145 (1995-02-01), Nakasha et al.
patent: 5442194 (1995-08-01), Moise
patent: 5448513 (1995-09-01), Hu et al.
patent: 5455432 (1995-10-01), Hartsell et al.
patent: 5463234 (1995-10-01), Toriumi et al.
patent: 5477169 (1995-12-01), Shen et al.
patent: 5523603 (1996-06-01), Fishbein et al.
patent: 5543652 (1996-08-01), Ikeda et al.
patent: 5552622 (1996-09-01), Kimura
patent: 5606177 (1997-02-01), Wallace et al.
patent: 5608250 (1997-03-01), Kalnitsky
patent: 5633178 (1997-05-01), Kalnitsky
patent: 5689458 (1997-11-01), Kuriyama
patent: 5698997 (1997-12-01), Williamson, III et al.
patent: 5705827 (1998-01-01), Baba et al.
patent: 5732014 (1998-03-01), Forbes
patent: 5761114 (1998-06-01), Bertin et al.
patent: 5770958 (1998-06-01), Arai et al.
patent: 5773996 (1998-06-01), Takao
patent: 5798965 (1998-08-01), Jun
patent: 5804475 (1998-09-01), Meyer et al.
patent: 5843812 (1998-12-01), Hwang
patent: 5869845 (1999-02-01), Van der Wagt et al.
patent: 5883549 (1999-03-01), De Los Santos
patent: 5883829 (1999-03-01), Van der Wagt
patent: 5895934 (1999-04-01), Harvey et al.
patent: 5903170 (1999-05-01), Kulkarni et al.
patent: 5907159 (1999-05-01), Roh et al.
patent: 5936265 (1999-08-01), Koga
patent: 5945706 (1999-08-01), Jun
patent: 5953249 (1999-09-01), Van der Wagt
patent: 5959328 (1999-09-01), Krautschneider et al.
patent: 5962864 (1999-10-01), Leadbeater et al.
patent: 6015739 (2000-01-01), Gardner et al.
patent: 6015978 (2000-01-01), Yuki et al.
patent: 6075265 (2000-06-01), Goebel et al.
patent: 6077760 (2000-06-01), Fang et al.
patent: 6084796 (2000-07-01), Kozicki et al.
patent: 6091077 (2000-07-01), Morita et al.
patent: 6097036 (2000-08-01), Teshima et al.
patent: 6104631 (2000-08-01), El-Sharawy et al.
patent: 6128216 (2000-10-01), Noble, Jr. et al.
patent: 6130559 (2000-10-01), Balsara et al.
patent: 6150242 (2000-11-01), Van der Wagt et al.
patent: 6184539 (2001-02-01), Wu et al.
patent: 6205054 (2001-03-01), Inami
patent: 6222766 (2001-04-01), Sasaki et al.
patent: 6225165 (2001-05-01), Noble, Jr. et al.
patent: 6243300 (2001-06-01), Sunkavalli
patent: 6246606 (2001-06-01), Forbes et al.
patent: 6261896 (2001-07-01), Jun
patent: 6294412 (2001-09-01), Krivokapic
patent: 6301147 (2001-10-01), El-Sharawy et al.
patent: 6303942 (2001-10-01), Farmer
patent: 6310799 (2001-10-01), Duane et al.
patent: 6353251 (2002-03-01), Kimura
patent: 6396731 (2002-05-01), Chou
patent: 6404018 (2002-06-01), Wu et al.
patent: 6424174 (2002-07-01), Nowak et al.
patent: 6490193 (2002-12-01), Van der Wagt et al.
patent: 6806117 (2004-10-01), King
patent: 2001/0005327 (2001-06-01), Duane et al.
patent: 2001/0013621 (2001-08-01), Nakazato
patent: 2001/0019137 (2001-09-01), Koga et al.
patent: 2001/0024841 (2001-09-01), Noble, Jr. et al.
patent: 2001/0053568 (2001-12-01), Deboy et al.
patent: 2002/0017681 (2002-02-01), Inoue
patent: 2002/0048190 (2002-04-01), King
patent: 2002/0054502 (2002-05-01), King
patent: 2002/0057123 (2002-05-01), King
patent: 2002/0063277 (2002-05-01), Ramsbey
patent: 2002/0066933 (2002-06-01), King
patent: 2002/0067651 (2002-06-01), King
patent: 2002/0076850 (2002-06-01), Sadd et al.
patent: 2002/0093030 (2002-07-01), Hsu et al.
patent: 2002/0096723 (2002-07-01), Awaka
patent: 2002/0100918 (2002-08-01), Hsu et al.
patent: 2002/0109150 (2002-08-01), Kajiyama
patent: 0747940 (1996-12-01), None
patent: 0747961 (1996-12-01), None
patent: 0655788 (1998-01-01), None
patent: 1050964 (2000-11-01), None
patent: 1085656 (2001-03-01), None
patent: 1107317 (2001-06-01), None
patent: 0526897 (2001-11-01), None
patent: 1168456 (2002-01-01), None
patent: 1204146 (2002-05-01), None
patent: 8018033 (1996-01-01), None
patent: 20011015757 (2001-01-01), None
patent: WO 90/03646 (1990-04-01), None
patent: WO 99/63598 (1999-04-01), None
patent: WO 00/41309 (2000-07-01), None
patent: WO 01/65597 (2001-09-01), None
patent: WO 01/69607 (2001-09-01), None
patent: WO 01/88977 (2001-11-01), None
patent: WO 01/99153 (2001-12-01), None
Final Report: SMILE MEL-ARI Project n°28741—Chapter V, pp. 184-194.
News Release from www.eurekalert.org/releases/udel-udcnflb.html, “UD Computer News: Future Looks Bright for Tunnel Diodes, Promising Faster, More Efficient Circuits,” Oct. 1, 1998, 4 pages.
P. S. Barlow, et al., “Negative differential output conductance of self-heated power MOSFETs,” IEE Proceedings-I Solid-State and Electron Devices, vol. 133, Part 1, No. 5, Oct. 1986, pp. 177-179.
E. Chan, et al., “Compact Multiple-Valued Multiplexers Using Negative Differential Resistance Devices,” IEEE Journal of Solid-State Circuits, vol. 31, No. 8, Aug. 1996, pp. 1151-1156.
E. Chan, et al., “Mask Programmable Multi-Valued Logic Gate Arrays Using RTDs and HBTs,” IE Proceedings-E: Computers and Digital Techniques, vol. 143, No. 5, Oct. 1996, pp. 289-294.
Deen, Jamal (editor) et al., excerpt from “CMOS RF modeling, characterization and applications,” World Scientific, Apr. 2002, 34 pages.
Dozsa, L. et al., “A transient method for mesuring current-voltage characteristics with negative differential resistance regions,” Research Institute for Technical Physics, P. O. Box 76, H-1325 Budapest, Hungary, (Received Jul. 24, 1997; accepted Aug. 1, 1997), 2 pages.
Gardner, Carl, Ringhofer, Christian, “Smooth Quantum Hydrodynamic Model Simulation of the Resonant Tunneling Diode,” Dept. Of Mathematics Arizona State University, pp. 1-5, (1998).
Geppert, Linda, “Quantum transistors: toward nanoelectronics,” IEEE Spectrum, Sep. 2000, pp. 46-51.
Goldhaber-Gordon, David et al., “Overview of nanoelectronic devices,” Proc. IEEE, 85(4), Apr. 1997, pp. 521-540.
Alejandro F. Gonzalez, et al., “Standard CMOS Implementation of a Multiple-Valued Logic Signed-Digit Adder Based on Negative Differential-Resistance Devices,” Proceedings of the 30th IEEE International Symposium on Multiple-Valued Logic (ISMVL 2000), 6 pages.
Haddab, Y. et al., “Quantized current jumps in silicon photoconductors at room temperature,” J. Appl. Phys. 86 (7), Oct. 1, 1999, pp. 3787-3791.
G. I. Haddad et al., “Tunneling Devices and Applications in High Functionality/Speed Digital Circuits,” Solid State Electronics, vol. 41, No. 10, Oct. 1997, pp. 1515-1524.
Hansch, W. et al., “The planar-doped-barrier-FET: MOSFET overcomes conventional limitations,” ESSDERC'97 27th European Solid-State Device Research Conference, Stuttgart, Sep. 22-24, 1997, 4 pages.
C. P. Heij, et al., “Negative Differential Resistance Due to Single-Electron Switching,” Applied Physics Letters, vol. 74, No. 7, Feb. 15, 1999, 5 pages.
Hong, J.W. et al, “Local charge trapping and detection of trapped charge by scanning capacitance microscope in SiO2/Si system,” Appl. Phys. Lett., 75 (12), Sep. 20, 1999, pp. 1760-1762.
Jungle, A, Pohl, C., “Numerical Simulation of Semiconductor Devices:

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods of testing/stressing a charge trapping device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods of testing/stressing a charge trapping device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods of testing/stressing a charge trapping device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3631792

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.