Methods of sealing compositions and methods

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Processes of preparing a desired or intentional composition...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C166S294000, C166S295000

Reexamination Certificate

active

06187839

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to sealing subterranean zones penetrated by well bores using high density polymeric sealing compositions.
2. Description of the Prior Art
Wells which produce oil and/or gas very often also produce water. If the amount of water produced is low, the water can be separated from the oil and/or gas in an economical manner. However, if large quantities of water are produced by a well in addition to oil and/or gas, the cost of pumping, handling, storing and disposing of the produced water often makes the operation of the well uneconomical.
Polymeric compositions which form polymerized and cross-linked impermeable masses have been developed and used heretofore in well completion and remedial operations. For example, polymeric compositions have heretofore been used to reduce or terminate the flow of water from a subterranean zone penetrated by a well bore. Such compositions are introduced into a subterranean water producing zone and caused to polymerize and cross-link therein whereby a stable gel which reduces or terminates the water flow from the zone is formed therein. U.S. Pat. Nos. 3,334,689 issued Aug. 8, 1967 and 3,490,533 issued Jan. 20, 1970, both to McLaughlin, disclose polymerizable monomer solutions containing a polymerization catalyst for injection into subterranean zones. The solutions polymerize and are cross-linked in the zones to form stable gels which reduce the water permeabilities of the zones and decrease or terminate the flow of water therefrom.
U.S. Pat. Nos. 5,335,726 issued on Aug. 9, 1994 and 5,358,051 issued Oct. 25, 1994, both to Rodrigues, disclose methods of forming polymeric gels in subterranean zones to reduce or shut off the flow of water therefrom wherein a monomer is polymerized in the formation in the presence of a cross-linker by an initiator selected from certain azo compounds. Also, the use of hydroxy unsaturated carbonyl monomers is disclosed.
The aqueous polymerizable monomer solutions containing monomer or monomer and cross-linker and a polymerization initiator have heretofore been pumped as low viscosity solutions into subterranean zones in which sealing procedures are to be conducted. The low viscosity solutions polymerize after placement which results in the formation of sealing gels in the zones. The polymerization of the monomer solutions is not initiated by the polymerization initiators heretofore used and/or does not proceed at an appreciable rate until oxygen-induced polymerization inhibition is overcome. That is, a polymeric solution contains dissolved oxygen which inhibits the polymerization of the monomer in the solution until all of the oxygen is consumed. The time required for the initiator to react with the oxygen present in the solution is known as the “induction period.” The induction period enables placement of the polymeric solution in the zone to be sealed before polymerization of the solution prevents its flow into the zone.
While various polymerization initiators such as persulfates, peroxides, oxidation-reduction systems and azo compounds have been utilized heretofore, azo compounds are generally preferred for the reason that they are less likely to cause premature gelation. Persulfates, peroxides and oxidation-reduction systems are subject to premature activation when they contact certain reactants such as ferrous ion.
In some wells, undesirable gas and/or water is produced into the well bore from subterranean zones penetrated thereby which makes the drilling of the well bore very difficult. For example, offshore wells in deep seawater are often drilled in a manner whereby the well bore is open to the sea floor. As a result, gas and/or water which flows into the well bore from subterranean zones cannot be controlled. That is, since the well bore is open, it cannot be isolated whereby a sealing composition can be pumped into the gas and/or water producing zones under pressure, i.e., the sealing composition cannot be squeezed into troublesome subterranean zones. Even in wells where pressure pumping operations can be carried out, it is often difficult to place a sealing composition in a subterranean zone because of its location, e.g., when the zone is near the bottom of the well bore.
Thus, there are needs for improved subterranean zone sealing compositions and methods which can be utilized in offshore well bores which are open to the sea floor as well as in other well bore sealing applications.
SUMMARY OF THE INVENTION
The present invention provides improved methods of sealing subterranean zones using high density subterranean zone sealing compositions which meet the needs described above and overcome the deficiencies of the prior art. A high density sealing composition of this invention can be spotted over a subterranean zone to be sealed and the high density of the composition causes it to flow into the zone to be sealed. Also, the high density sealing composition will migrate to the bottom of a well bore or zone.
The sealing compositions useful in accordance with this invention are basically comprised of a high density aqueous salt solution, a water soluble polymerizable monomer and a polymerization initiator. When the sealing composition is to be used at a temperature below about 70° F., an oxygen scavenger is also included therein to reduce the induction period and shorten the time for polymerization to take place.
A preferred composition of this invention is comprised of an aqueous zinc bromide solution having a density of about 15 pounds per gallon; a water soluble polymerizable monomer comprised of hydroxyethylacrylate and an azo polymerization initiator selected from the group of 2,2′-azobis(N,N′-dimethylene isobutyramidine) dihydrochloride, 2,2′-azobis(2-amidinopropane) dihydrochloride and 2,2′-azobis[2-methyl-N-(2-hydroxyethyl) propionamide].
The methods of this invention for sealing a subterranean zone penetrated by a well bore comprise the steps of introducing a high density sealing composition into the zone by way of the well bore comprising a high density salt solution, a water soluble polymerizable monomer and a polymerization initiator; and allowing the sealing composition to form a sealing gel in the zone.
It is, therefore, a general object of the present invention to provide improved methods of sealing subterranean zones using high density sealing compositions.
Other and further objects, features and advantages of the present invention will be readily apparent to those skilled in the art upon a reading of the description of preferred embodiments which follows.
DESCRIPTION OF PREFERRED EMBODIMENTS
The present invention provides improved methods and high density sealing compositions for carrying out well completion and remedial operations at temperatures in the range of from about 50° F. to about 170° F. The methods are particularly suitable for reducing or terminating the undesirable flow of water and/or gas from subterranean zones.
The uncontrolled and undesirable flow of water from subterranean zones is often encountered in offshore wells drilled through shallow sediments with the well bores open to the sea floor. The temperatures encountered are low which in combination with open well bores make treatments for reducing or terminating the flow of water very difficult. That is, because the well bores are open, they cannot be isolated whereby sealing compositions can be pumped into the water and/or gas producing zones under pressure. This problem is solved by the methods of the present invention which utilize high density polymeric sealing compositions. Such a high density composition can be spotted over a subterranean zone to be sealed, and as a result of the high hydrostatic pressure produced by the composition, it will flow into the subterranean zone to be sealed. Thereafter, the sealing composition is allowed to polymerize and form a sealing gel in the zone which reduces or terminates the flow of water and/or gas through the zone.
As mentioned, the high density compositions and methods of this

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods of sealing compositions and methods does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods of sealing compositions and methods, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods of sealing compositions and methods will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2596422

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.