Methods of refractive correction of the eye

Surgery – Miscellaneous – Methods

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C606S004000, C606S027000, C606S107000, C606S005000, C623S004100, C623S005110, C623S006110

Reexamination Certificate

active

06543453

ABSTRACT:

FIELD OF THE INVENTION
The present invention is directed to refractive correction devices including a phakic intraocular lens and/or intracorneal ring. Further, the present invention is directed to the combination of a phakic intraocular lens and intracorneal ring. The intracorneal ring according to the present invention is preferably adjustable in size, shape and/or configuration. The phakic intraocular lens and intracorneal ring according to the present invention are preferably biocompatible. The present invention is also directed to methods of refractive correction of the eye.
BACKGROUND OF THE INVENTION
The refractive correction of the human eye is a rapidly developing market in the United States and the world. Many patients are interest in getting rid of their conventional eye glasses and/or contact lenses to improve their personal looks and benefit from the numerous conveniences from these refractive correction procedures over wearing conventional eye glasses and/or contact lenses.
The current methods for refractive correction of the eye include LASIK surgery, a procedure for reshaping the cornea with a laser underneath a flap of the cornea, implantation of a phakic intraocular lens (e.g. Implantable Contact Lens (ICL), a phakic refractive lens (prk) manufactured by Staar Surgical AG of Switzerland), implantation of an intracorneal ring (icr) into the stroma of the eye, and other surgical procedures including prk and rk.
Staar Surgical AG of Switzerland has been researching and developing a phakic refractive lens (prl) for implantation in the posterior chamber and located between the iris and natural crystalline lens. The Implantable Contact Lens® brand phakic corrective lens is currently capable of correcting +10 to 18 diopters and −10 to 18 diopters correction. There exists a number of parameters that must be considered for preparing the proper size and prescription of the Implantable Contact Lens® to achieve a high level of visual acuity once implanted in a patient's eye.
The present invention proposes making a substantial correction of vision with the Implantable Contact Lens brand phakic corrective lens, and then possibly following up with one or more additional refractive correction procedures to fine tune the patient's eye for high visual acuity. Specifically, it is possible to over correct or under correct a patients eye with an Implantable Contact Lens brand phakic refractive corrective lens during an operation. Further, due to the effects of healing and/or aging of the patient's eye, it may become necessary to provide an additional subsequent procedure to fine tune a minor refractive correction of the patient's eye to achieve a high level of visual acuity. Thus, after implantation of an Implantable Contact Lens brand phakic refractive lens the patient's eye may be treated immediately or later in time with a subsequent procedure such as LASIK and/or implantation of an intracorneal ring.
SUMMARY OF THE INVENTION
An object of the present invention is to provide a refractive correction device in the eye.
A second object of the present invention is to provide multiple refractive correction devices in the eye.
A third object of the present invention is to provide a refractive correction device in combination with a refractive correction procedure in the eye.
A fourth object of the present invention is to provide the combination of a phakic refractive lens and an adjustable intracorneal ring.
A fifth object of the present invention is to provide an adjustable intracorneal ring arranged so that the size, shape, and/or configuration can be changed prior to insertion in the eye.
A sixth object of the present invention is to provide an adjustable intracorneal ring arranged so that the size, shape and/or configuration of the adjustable intracorneal ring can be adjusted after being implanted in the eye.
A seventh object of the present invention is to provide an adjustable intracorneal ring arranged so that the size, shape and/or configuration of the intracorneal ring can be changed after being implanted in the eye by electromagnetic waves such as light, laser, electromagnetic, electromagnestrictive, etc.
An eighth object of the present invention is to provide a method of refractive correction of an eye.
A ninth object of the present invention is to provide a method of refractive correction of the eye including the step of adjusting the size, shape, and/or configuration of an intracorneal ring after being implanted in the eye.
A tenth object of the present invention is to provide a method of refractive correction of an eye including the steps of providing at least two refractive correction devices and/or refractive correction procedures of the eye.
The present invention is to provide for the refractive correction of an eye. The present invention can include refractive correction devices and/or refractive correction procedures. Preferably, the present invention is directed to refractive correction of the eyes with multiple refractive correction devices and/or refractive correction procedures.
A preferred embodiment of the present invention includes providing a phakic refractive lens (e.g. Implantable Contact Lens brand phakic refractive lens) in combination with an intracorneal ring in the eye. Preferably, the refractive correction lens is first implanted and then the intracorneal ring is implanted immediately thereafter. However, the intracorneal ring can be implanted minutes, hours, days, or weeks later. The phakic refractive lens can be a hard lens (e.g. made of polymethyl methacrylate PMMA) or more preferably a deformable phakic refractive lens (e.g. made of a resilient biocompatible material such as a collagen-based polymer (e.g. Collamer), silicone, hydrogel, or other suitable biocompatible polymer or plastic material). The phakic corrective lens can be for correction of power only and/or can be for the correction of power and astigmatism. For example, the phakic correction lens can be a toric phakic correction lens (e.g. toric implantable contact lens and/or prism phakic correction lens). The intracorneal ring can be a single ring, one or more segments of a ring, a composite ring made of different materials or layers of materials, or an adjustable intracorneal ring. A preferred combination is an Implantable Contact Lens brand phakic refractive lens with an adjustable intracorneal ring.
Another preferred embodiment of the present invention is providing a phakic refractive lens with a intracorneal refractive lens ring. The intracorneal refractive lens ring is an intracorneal ring configured to provide refractive properties with or without lens power correction ability. The intracorneal refractive lens ring can be configured to focus light to provide near sight visual acuity, for example, after LASIK surgery which typically decreases near visual acuity of the patient. The bulk opr displace volume of the intracorneal refractive lens ring dictates the extent to which this device will also provide lens power correction of the cornea of the patient. For example, the device can be made very thin so as to have no power correction effect, or it can be increased in thickness to provide some lens power correction. The intracorneal refractive lens ring can be in the configuration of a one-piece ring or can be one or more segments of a ring. The device, for example, can be implanted by first tunneling a circular path between layers of the stroma with a surgical instrument (e.g. treefind), and then the ring or segments can be implanted in the circular tunnel.
A further preferred embodiment of the present invention is to provide the combination of a LASIK correction procedure with an intracorneal ring with or without refractive lens properties. Specifically, the intracorneal ring can be configured to provide bulk in the stroma of the eye to provide lens power correction. Alternatively, the intracorneal ring can be an intracorneal refractive lens ring configured to change the focal point of a portion of the eye with or without bulk to optionally cha

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods of refractive correction of the eye does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods of refractive correction of the eye, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods of refractive correction of the eye will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3019279

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.