Methods of re-coating and re-covering bitumen-based built-up...

Static structures (e.g. – buildings) – Processes – Adhering preformed sheet-form member

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C052S741400, C052S408000

Reexamination Certificate

active

06360511

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to built-up roofing systems and methods. More particularly the invention relates to built-up roofing systems for flat or low sloped roofs utilizing a novel coal tar composition as the flood coat.
BACKGROUND OF THE INVENTION
Built-up roofing (BUR) systems generally comprise a substantially rigid deck covered with a membrane comprising multiple layers of bitumen impregnated felt having a separately applied coating of bitumen on top of each layer of felt with a protective layer of small stones or other inert mineral aggregate materials embedded in and covering the top bitumen coating. BUR is used primarily on commercial buildings which have flat or low-slope roofing systems. Its popularity arises from its relatively low cost combined with its effectiveness as a water repellant membrane and its durability.
Bituminous materials, especially asphalt and coal tars, have been utilized as roofing materials particularly in built-up roofing applications, as road paving materials, and as adhesive materials. However, such materials tend to deteriorate under conditions of extreme temperature variations, constant exposure to physical stress, and environmental weathering. Various proposals have been made in the art to modify the bituminous materials to overcome these deficiencies.
Although asphalt and coal tar have a similar appearance when in a package or in a finished roof, they are derived from different raw materials, and they are also different in their chemistry. Coal tar and asphalt generally are incompatible. Coal tar is obtained by heating bituminous coal to very high temperatures and collecting the volatile materials that are produced. These volatiles are referred to as crude coke oven tar, and the solid residue left behind is called coke. The crude coke oven tar is processed to recover a variety of materials including creosote and precursors for a large number of other important chemicals. The residue left after this processing step is called coal tar pitch which comprises primarily aromatic hydrocarbons. The coal tar pitch is the material used in the more familiar applications of roofing and asphalt concrete surface treating.
Asphalt, on the other hand, is derived from petroleum or crude oil and comprises primarily aliphatic hydrocarbons. Crude oil is processed at a refinery by distilling off the “light ends” to produce materials such as propane, gasoline, fuel oils, and chemical intermediates. The residue that remains from the distillation is referred to as straight-run asphalt. Straight run asphalt is processed primarily for road paving applications, and after further processing (e.g., oxidation or blowing), it is converted to roofing asphalts designated as D312 Types I through IV, by the American Society for Testing and Materials (ASTM).
The present invention utilizes compositions which are prepared from coal tar as opposed to compositions which are prepared from asphalt. Aqueous coal tar emulsions have been described in the prior art as useful in preparing protective coatings. In its most common form, an aqueous coal tar emulsion comprises an emulsion of a coal tar in an aqueous medium with an emulsifying or dispersing agent such as an organic soap or detergent and/or an inorganic colloid such as a particulate clay. A conventional practice in the protective coating art is to brush, spray or paint the articles with an aqueous emulsion of coal tar. When the coating of coal tar dries on the article, it provides a protective film. Such films, however, have certain disadvantages such as being attacked by various solvents, being soft, and having inadequate ductility or tensile strength. It has been proposed to improve these properties by including various additives into the emulsions. Thermoplastic rubbers, for example, have been suggested as useful additives for coal tar emulsions to improve solvent resistance and elasticity of the film. In particular, a synthetic acrylonitrile-butadiene latex has been suggested as being useful for adding to coal tar emulsions. U.S. Pat. No. 3,027,342 describes a rubberized coal tar emulsion by dissolving a copolymer of acrylonitrile and butadiene and coal tar to form a solution which can be successfully emulsified in an aqueous medium without the addition of an emulsifying agent. U.S. Pat. No. 3,296,165 describes a coal tar emulsion composition comprising an emulsion coating including an emulsified coal tar/clay mixture and a butyl rubber latex. The compositions described in the '165 patent also include an aluminum powder additive.
U.S. Pat. No. 3,497,371 describes coal tar emulsions containing certain filler materials, a synthetic rubber latex, and certain water-soluble organic amines.
U.S. Pat. Nos. 3,835,117 and 3,897,380 describe rubberized coal tar emulsion compositions especially suitable for sealing bituminous pavement compositions such as asphalt pavement compositions. The rubberized coal tar emulsions described in these two patents are comprised of a major portion of a prepared coal tar pitch emulsion and water and a minor portion of an acrylonitrile-butadiene copolymer latex having an average particle size between 400 and 1000 angstroms, and, optionally, a silicone resin.
U.S. Pat. No. 4,544,690 also describes aqueous rubberized coal tar emulsions. The coal tar emulsions described in this patent comprise a major portion of a commercial coal tar emulsion and water admixed with a small amount of a carboxylated butadiene-styrene-acid copolymer latex having a particular size. The emulsions also may contain a fine mineral filler material such as sand. Such emulsions are reported to exhibit a high degree of spreadability, and to provide a sealing coating that has a long life.
U.S. Pat. Nos. 4,835,199 and 4,973,615 describe bituminous compositions comprising a blend of bitumen (including asphalts and tars) and a thermoplastic elastomer containing at least two polymer blocks wherein one of said polymer blocks is a crystalline polymer block and one of said polymer blocks is an amorphous polymer block. Examples of such thermoplastic elastomers include styrene-butadiene block copolymers. The compositions described in the '615 patent also include a polyolefin.
SUMMARY OF THE INVENTION
In one embodiment, this invention relates to a bitumen-based built-up roofing system comprising a structural deck covered with a membrane comprising:
(A) at least two layers of reinforcement, the bottom layer being attached to said structural deck,
(B) a bitumen-based waterproofing adhesive between each layer of reinforcement wherein each layer is adhered to the bitumen-based adhesive between the layers,
(C) a bitumen based flood coat over the reinforcement layers, and
(D) a protective layer of mineral aggregate material embedded in the flood coat, wherein the bitumen in at least the flood coat comprises a coal tar composition prepared from a blend comprising:
(1) from about 80 parts to about 98 parts by weight of coal tar having an overall float test of from about 50 seconds to about 220 seconds,
(2) from about 2 parts to about 20 parts by weight of coal tar pitch having a softening point of from about 140 to about 160° C., and
(3) from about 1% to about 20% by weight, based on the total weight of the composition, of an acrylonitrile-butadiene copolymer.
In another embodiment, the present invention relates to a coal tar impregnated reinforcement sheet useful particularly in bitumen-based built-up roofing systems which comprises a layer of reinforcement such as a felt which has been impregnated with a coal tar composition as described above.
In yet another embodiment, the invention relates to a method of re-coating a bitumen-based built-up roofing membrane which comprises the steps of:
(A) removing loose mineral aggregate, if any, from the surface of the existing roofing membrane,
(B) cleaning the surface of an existing roofing membrane,
(C) applying a flood coat over the cleaned surface, and
(D) embedding a layer of mineral aggregate material into the flood coat wherein the flood coat comprises the coal ta

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods of re-coating and re-covering bitumen-based built-up... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods of re-coating and re-covering bitumen-based built-up..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods of re-coating and re-covering bitumen-based built-up... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2826351

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.