Methods of preventing breast cancer

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S333000

Reexamination Certificate

active

06303634

ABSTRACT:

Breast carcinoma or cancer is a major medical problem for women beginning in the third decade of life and continuing throughout senescence. It is currently estimated that in the United States women have a one in eight chance of developing the disease in their lifetime (by the age of eighty), whereas one in twenty-eight women have a lifetime risk of dying from breast cancer (Harris et.al., Ed. Diseases of the Breast, 1996: pp. 159-168). Carcinoma of the breast is the third most common cancer, and the most common cancer in women. It is a major cause of mortality in women, as well as a cause of disability, psychological trauma, and economic loss. Breast carcinoma is the second most common cause of cancer death in women in the United States, and for women between the ages of 15 and 54, the leading cause of cancer-related death (Forbes, Seminars in Oncology, vol.24(1), Suppl 1, 1997: pp.S1-20-S1-35). Indirect effects of the disease also contribute to the mortality from breast cancer including consequences of advanced disease, such as metastases to the bone or brain. Complications arising from bone marrow suppression, radiation fibrosis and neutropenic sepsis, collateral effects from therapeutic interventions, such as surgery, radiation, chemotherapy, or bone marrow transplantation-also contribute to the morbidity and mortality from this disease.
The epidemiology of this disease, although the subject of intense investigation, is still poorly understood. There appears to be a substantial genetic component which predisposes some women to contract the disease. Yet it is not clear whether this genetic component is causative or permissive to the disease, or only predictive of the disease process. Although it has been known for a long time that breast carcinoma tends to occur more frequently in some families, such analysis is not always predictive of disease occurrence in other family members and is of little value for prediction of its prevalence in the general population. It is currently estimated that only 5% of all breast cancers result from a genetic predisposition (Harris et.al., Ed. Disease of the Breast, 1996: pp.159-168).
Extensive clinical and pharmacological investigation has been conducted in the attempt to elucidate the relationship between the hormone estrogen, and the cause and maintenance of breast carcinoma. Risk factors for the disease are principally related to the duration of a woman's cumulative estrogen exposure and include: age at menarche, parity, age at the time of the first full-term pregnancy, and menopause. Although much is known about the relationship of estrogen in the maintenance of the disease and the importance of estrogen dependence with respect to endocrine treatment of the disease, there is considerable controversy over the role of estrogen in the pathogenesis of this disease, i.e., whether estrogen is a causative agent (initiator), or an obligatory co-factor (promotor) in the process of carcinogenesis.
Estrogen, which includes 17-&bgr;-estradiol, estrone, and their active metabolites, is a major sex-related hormone in women, but additionally, it appears to be an important homeostatic hormone in both men and women throughout their adult life. All humans have some level of endogenous estrogen. Yet the vast majority of people do not develop breast carcinoma, supporting a position that estrogen, per se, is not an initiator of carcinogenesis, such as is the case with a chemical or environmental carcinogen. Additionally, women, as they go through menopause with the consequent loss of endogenous ovarian estrogen production, do not experience a commensurate reduction in their risk of contracting this disease. In fact, apart from a personal history of breast cancer, age is the single greatest risk factor for developing this disease. Breast cancer is rare in women younger than age 20, but this risk increases rapidly with age. When compared with a 20-year-old woman's risk of developing breast cancer, a woman age 40 to 49 has a 40-fold increase in risk, a woman age 50 to 59 a 60-fold increase, and a woman over the age of 60 has a risk 90-fold higher than that of her younger counterpart (Forbes, Seminars in Oncology, vol.24(1), Suppl 1, 1997: pp.S1-20-S1-35).
Hormone replacement therapy (HRT) is often recommended for postmenopausal and peri-menopausal women to alleviate menopausal symptoms and reduce the risk of cardiovascular disease, osteoporosis, and other serious sequellae of long-term estrogen deficiency. However, because of well-accepted data on the direct effects of cumulative lifetime estrogen exposure and breast cancer risk, there is vigorous debate over the potential of hormone replacement to increase a woman's risk of developing breast carcinoma. While short-term HRT (less than 5 years) is associated with minimal or no increase in risk, epidemiologic studies and meta-analyses of long-term HRT use (between five and seven years) report increases in the risk of developing breast cancer of 35% to 75% (Grady et.al., Hormone Therapy to Prevent Disease and Prolong Life in Postmenopausal Women.,
Ann Intern Med,
117: pp.1016-1037, 1992).
Theories and evidence regarding the role of estrogen in the pathogenesis of this disease are complex. Experimental models of mammary carcinoma in rats require administration of a carcinogen for tumor induction (tumorigenesis), whereas estrogen behaves as a promoter (rather than an initiator) of this process. Ovariectomy, in these animal models, will interfere with this process of chemically-induced carcinogenesis. In humans, however, the timing of the carcinogenic event is unknown. What is known is that women who undergo premature menopause or medical or surgical oophorectomy before the age of 40, will have an approximately 50% reduction in breast cancer risk compared with women undergoing natural menopause at age 50 (Harris, et.al., Ed. Diseases of the Breast, 1996: pp.159-168). It is logical, therefore, that approaches for the prevention of breast cancer would target the reduction in lifetime estrogen exposure. This can be accomplished by pharmacologically-induced estrogen deprivation, through the administration of an agent which would block the production and/or action of estrogen anywhere along the hypothalamic-pituitary-gonadal axis. It is nevertheless problematic to extrapolate the probable success of preventing breast carcinoma, de novo or otherwise, with agents of this nature.
In contrast to the complex role of estrogen in the pathogenesis of this disease, and despite a continually evolving body of data, considerable advances have been made in our understanding of the effects of estrogen in the setting of established breast carcinoma. Estrogen is a growth factor to most breast carcinoma cells in the early stages of the disease. The rapidly dividing cells are sensitive to its effects through the estrogen receptor. It has also been established, although not well understood that, at some point during the course of this disease process, transformed (cancer) cells often lose their sensitivity to the promoting effects of estrogen. Eventually, a majority of carcinoma cells become independent of estrogen for growth and lose their responsiveness to hormonally based therapy, which broadly includes: the GNRH agonists, “anti-estrogens,” progestins, and androgens.
Enormous benefit in the treatment of breast cancer has been achieved with the advent and widespread use of hormonally based therapeutic interventions. The most extensively used endocrine therapy is tamoxifen. The five-year survival rate for women with breast carcinoma has been dramatically improved with this therapy; however, no additional benefit or survival advantage is achieved by continuing therapy for more than five years. In fact, data indicate a decrease in disease-free survival as well as overall survival, with greater than five years tamoxifen use (NSABP B-14 Trial; Fisher et al. Five Versus More Than Five Years of Tamoxifen Therapy for Breast Cancer Patients With Negative Lymph Nodes and Estrogen Receptor-Positive Tumors,
J Natl Canc Inst, vol.
8

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods of preventing breast cancer does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods of preventing breast cancer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods of preventing breast cancer will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2581830

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.