Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Liposomes
Reexamination Certificate
1995-04-28
2002-06-18
Kishore, Gollamudi S. (Department: 1615)
Drug, bio-affecting and body treating compositions
Preparations characterized by special physical form
Liposomes
C428S402200, C264S004100, C264S004300
Reexamination Certificate
active
06406713
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention is directed to formulations and methods for making drug-associated lipid complexes at high drug:lipid ratios (high drug:lipid complexes, or HDLCs). Such formulations are generally substantially equivalent or greater in efficacy to the same drug in their free form, yet have lower toxicity. Additionally, methods for the formation of such HDLCs are disclosed. More particularly, the invention is directed to the use of these high drug:lipid complexes with the toxic antifungal polyene antibiotics, specifically, amphotericin B and nystatin.
The high drug:lipid complexes (HDLCs) of the present invention can be made by techniques substantially the same as those for making liposomes. The invention includes the use of these HDLC structures in association with bioactive agents such as drugs, specifically the polyene antibiotics such as amphotericin B and nystatin.
As another aspect of the invention, a novel method for forming liposomes (or HDLCs) without the use of organic solvents is disclosed. Entrapment or association of a drug into the liposomes proceeds via an ethanol or an aqueous intermediate.
Liposomes are completely closed lipid bilayer membranes containing an entrapped aqueous volume. Liposomes may be unilamellar vesicles (possessing a single membrane bilayer) or multilamellar vesicles (onion-like structures characterized by multiple membrane bilayers, each separated from the next by an aqueous layer). The bilayer is composed of two lipid monolayers having a hydrophobic “tail” region and a hydrophilic “head” region. The structure of the membrane bilayer is such that the hydrophobic (nonpolar) “tails” of the lipid monolayers orient toward the center of the bilayer while the hydrophilic “heads” orient towards the aqueous phase.
The original liposome preparation of Bangham et al. (J. Mol. Biol., 1965, 13:238-252) involves suspending phospholipids in an organic solvent which is then evaporated to dryness leaving a phospholipid film on the reaction vessel. Next, an appropriate amount of aqueous phase is added, the mixture is allowed to “swell,” and the resulting liposomes which consist of multilamellar vesicles (MLVs) are dispersed by mechanical means. This technique provides the basis for the development of the small sonicated unilamellar vesicles described by Papahadjopoulos et al. (Biochem. Biophys. Acta., 1967, 135:624-638), and large unilamellar vesicles.
Techniques for producing large unilamellar vesicles (LUVs), such as, reverse phase evaporation, infusion procedures, and detergent dilution, can be used to produce liposomes. A review of these and other methods for producing liposomes may be found in in the text
Liposomes
, Marc Ostro, ed., Marcel Dekker, Inc., New York, 1983, Chapter 1, the pertinent portions of which are incorporated herein by reference. See also Szoka, Jr. et al., (1980, Ann. Rev. Biophys. Bioeng., 9:467), the pertinent portions of which are also incorporated herein by reference. A particularly preferred method for forming LUVs is described in Cullis et al., PCT Publication No. 87/00238, Jan. 16, 1986, entitled “Extrusion Technique for Producing Unilamellar Vesicles” incorporated herein by reference. Vesicles made by this technique, called LUVETS, are extruded under pressure through a membrane filter. Vesicles may also be made by an extrusion technique through a 200 nm filter; such vesicles are known as VET
200
s. These vesicles may be exposed to at least one freeze and thaw cycle prior to the extrusion technique; this procedure is described in Mayer et al., 1985, Biochem. et. Biophys. Acta., 817:193-196, entitled “Solute Distributions and Trapping Efficiencies Observed in Freeze-Thawed Multilamellar Vesicles,” relevant portions of which are incorporated herein by reference.
In the practice of this invention, a class of liposomes and method for their formation, characterized as having substantially equal lamellar solute distribution is preferred. This preferred class of liposomes is denominated as stable plurilamellar vesicles (SPLV) as defined in U.S. Pat. No. 4,522,803 to Lenk et al. and includes monophasic vesicles as described in U.S. Pat. No. 4,588,578 to Fountain et al. and frozen and thawed multilamellar vesicles (FATMLV) as described above.
A variety of sterols and their water soluble derivatives have been used to form liposomes; see specifically Janoff et al., U.S. Pat. No. 4,721,612, issued Jan. 26, 1988, entitled “Steroidal Liposomes”. Mayhew et al., PCT Publication No. WO 85/00968, published Mar. 14, 1985, describe a method for reducing the toxicity of drugs by encapsulating them in liposomes comprising alpha-tocopherol and certain derivatives thereof. Also, a variety of tocopherols and their water soluble derivatives have been used to form liposomes; see Janoff et al., PCT Publication No. 87/02219, published Apr. 23, 1987, entitled “Alpha Tocopherol-Based Vesicles” and incorporated herein by reference.
In a liposome-drug delivery system, the bioactive agent such as a drug is entrapped in the liposome and then administered to the patient to be treated. For example, See Rahman et al., U.S. Pat. No. 3,993,754; Sears, U.S. Pat. No. 4,145,410; Papahadjopoulos et al., U.S. Pat. No. 4,235,871; Schneider, U.S. Pat. No. 4,224,179; Lenk et al., U.S. Pat. No. 4,522,803; and Fountain et al., U.S. Pat. No. 4,588,578. Alternatively, if the drug is lipophilic, it may associate with the lipid bilayer. In the present invention, the terms “entrap” or “encapsulate” shall be taken to include both the drug in the aqueous volume of the liposome as well as drug associated with the lipid bilayer.
Many drugs that are useful for treating disease show toxicities in the patient; such toxicities may be cardiotoxicity, as with the antitumor drug doxorubicin, or nephrotoxicity, as with the aminoglycoside or polyene antibiotics such as amphotericin B. Amphotericin B is an extremely toxic antifungal polyene antibiotic, but the single most reliability in the treatment of life-threatening fungal infections (Taylor et al., Am. Rev. Respir. Dis., 1982, 125:610-611). Because amphotericin B is a hydrophobic drug, it is insoluble in aqueous solution and is commercially available as a colloidal dispersion in desoxycholate, a detergent used to suspend it which in itself is toxic. Amphotericin B methyl ester and amphotericin B have also been shown to be active against the HTLV-III/LAV virus, a lipid-enveloped retrovirus, shown in the etiology of acquired immuno-deficiency syndrome (AIDS) (Schaffner et al., Biochem, Pharmacol., 1986, 35:4110-4113). In this study, amphotericin B methyl ester ascorbic acid salt (water soluble) and amphotericin B were added to separate cultures of HTLV-III/LAV infected cells and the cells assayed for replication of the virus. Results showed that amphotericin B methyl ester and amphotericin B protected target cells against the cytopathic effects of the virus, similar to that demonstrated for the herpes virus (Stevens et al., Arch. Virol., 1975, 48:391).
Reports of the use of liposome-encapsulated amphotericin B have appeared in the literature. Juliano et al. (Annals N. Y. Acad. Sci., 1985, 446:390-402) discuss the treatment of systemic fungal infections with liposomal amphotericin B. Such liposomes comprise phospholipid, for example dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylglycerol (DMPG) in a 7:3 mole ratio, and cholesterol. Acute toxicity studies (LD
50
s) and in vitro assays comparing free and liposome-entrapped amphotericin B showed lower toxicities using the liposomal preparations with substantially unchanged antifungal potency. Lopez-Berestein et al. (J. Infect. Dis., 1986, 151:704-710) administered liposome-encapsulated amphotericin B to patients with systemic fungal infections. The liposomes comprised a 7:3 mole ratio of DMPC:DMPG, and the drug was encapsulated at a greater than 90% efficiency. As a result of the liposomal-drug treatment at 5 mol % amphotericin B, 66% of the patients treated responded favorably, with either partial or complete remission of the fungal infection
Cullis Pieter R.
Durning Anthony G.
Janoff Andrew S.
Kearns John J.
Madden Thomas D.
Kishore Gollamudi S.
The Liposome Company Inc.
LandOfFree
Methods of preparing low-toxicity drug-lipid complexes does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Methods of preparing low-toxicity drug-lipid complexes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods of preparing low-toxicity drug-lipid complexes will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2979404