Methods of potentiating organic nitrates having vasodilating...

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S474000, C514S562000, C514S563000, C514S568000, C514S645000

Reexamination Certificate

active

06284790

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to methods and formulations for potentiating the vasodilating activity of organic nitrates being administered to a subject, and more particularly, to methods and formulations for potentiating the vasodilating activity of nitroglycerin.
BACKGROUND OF THE INVENTION
For over one hundred years, organic nitrates such as nitroglycerin and amyl nitrite, among others, have been used to relieve anginal pain and treat heart disease (Reeves. J. T., 1995, NIPS. 10, 141). The beneficial use of these compounds is due to their ability; once administered to subject, to induce dilation of the vascular system (i.e., arteries and veins) resulting in decrease in blood pressure and attenuation of the pre-load on the heart.
Nitroglycerin or glycerol trinitrate is an organic nitrate ester which, when administered to a subject, is converted biologically to nitric oxide (“NO”), a pharmacologically active metabolite. NO, for example, activates soluble guanylate cyclase in vascular smooth muscle cells which in turn increases cyclic guanosine monophosphate (cGMP) resulting in vasorelaxation and ultimately leading to vasodilation and a reduction in blood pressure. However, the effectiveness of nitroglycerin and other organic nitrates having vasodilating activity is greatly diminished because the recipient of the organic nitrate rapidly develops a tolerance to the beneficial effects of the organic nitrate.
Tolerance to the vascular and anti-anginal effects of nitroglycerin and other organic nitrates can develop at low dosages as well as at high dosages. As a result, the organic nitrate loses its effectiveness during sustained therapy and increasing amounts of the organic nitrate must be administered to achieve the same effect. As nitrate tolerance progresses, the effectiveness of nitroglycerin and other organic nitrates are further limited and increased dosages have little or no effect on vasorelaxation or vasodilation (see, e.g., Bogaert, M., 1991, J. Cardiovas. Pharmacol. 17 (Suppl. 3), S313; and Unger, P., et al., 1991, J. Cardiovasc. Pharmacol. 17 (Suppl. 3), S300). Furthermore, in certain circumstances, the administration of an organic nitrate to a patient who is nitrate tolerant may result in vasoconstriction, and not vasodilation (Caramori et al., 1998, JACC 32(7), 1969; Gupte et al., 1996, Am. J. Physiol. H2447). This is potentially a dangerous side effect as the administration of the organic nitrate may exacerbate the very condition that it is supposed to improve. Moreover, the infusion of very high doses of organic nitrates in an attempt to overcome the development of tolerance may lead cytotoxicity and organ failure.
The precise mechanism in which tolerance of organic nitrates (e.g., nitroglycerin) develops remains unknown. Theories explaining the development of tolerance include: (1) the sulfhydryl pools necessary for the direct biotransformation of nitroglycerin into active nitric oxide are depleted by excess nitroglycerin substrate (Boesgaard, S., et al., 1991, J. Pharmacol. Exp. Ther. 258, 851); (2) the activation of vascular guanylate cyclase is diminished by nitroglycerin (Henry P. J., et al., 1989, Br. J. Pharmacol. 98, 757); or (3) the rate of cGMP degradation may be increased due to enhanced of cGMP phosphodiesterase during tolerance to nitroglycerin (Axelsson, K. L., et al., 1987, Drugs 33, 63). Additionally, neurohormonal activation and increase in plasma volume have recently been incriminated in tolerance development.
Attempts to avoid or reduce the development of nitrate tolerance have included the use of antioxidants such as vitamins E and C. (Munzel et al., 1998, Am. J. Cardiol. 81 (1A), 30A). Other methods include the administration of reduced glutathione or cysteine and the pretreatment with angiotensin II converting enzyme inhibitors or angistensin II receptor antagonist. Likewise, some success has been achieved with thromboxane receptor antagonists to inhibit vasoconstriction associated with organic nitrate administration (Gupte et al., 1996, Am. J. Physiol. H2447). However, these methods have produced conflicting results.
In view of the above, and because nitrates are considered as first-line therapy, there is a need in the art for methods of potentiating (i.e., increasing the effectiveness of) organic nitrates being administered to subject who does not exhibit a tolerance for organic nitrates. Likewise, there is a need in the art for methods of increasing the effectiveness of organic nitrates being administered to a subject who already exhibits a tolerance to organic nitrates.
Accordingly, it is an object of the present invention to provide, inter alia, methods, formulations, and synergistic compositions for potentiating of organic nitrates being administered to a subject.
SUMMARY OF THE INVENTION
The present invention provides a method for potentiating an organic nitrate having vasodilating activity by administering to a subject an effective amount of the organic nitrate with a potentiating amount of a thromboxane receptor antagonist and a reducing agent. In one embodiment, the organic nitrate, thromboxane receptor antagonist and reducing agent are co-administered to the subject. In alternative embodiment, the thromboxane receptor antagonist and reducing agent are administered to the subject prior to the organic nitrate. While in another embodiment, the organic nitrate is administered to the subject prior to the thromboxane receptor antagonist and reducing agent. The subject preferably is a mammal, which may be in need of vasodilation and may additionally exhibit a tolerance for the organic nitrate.
An organic nitrate having vasodilating activity includes nitroglycerin, amyl nitrite, isosorbide dinitrate, isosorbide mononitrate, erythrityl tetranitrate, pentaerythritol trinitrate, pentaerythritol tetranitrate, sodium nitroprusside, trolnitrate phosphate, clonitrate, mannitol hexanitrate, propatyl nitrate, or any mixture thereof. One preferred organic nitrate is nitroglycerin. An effective amount of the organic nitrate ranges from 0.0001 to 120 mg/kg of body weight per day, with no more than 30 mg/kg being preferred, and no more 0.5 mg/kg being more preferred.
In one embodiment the reducing agent is a non-antioxidant reducing agent. Non-antioxidant reducing agent include GDP (guanosine diphosphate), GTP (guanosine triphosphate), NADPH (reduced nicotinamide-adenine dinucleotide phosphate), NADH (reduced nicotinamide-adenine dinucleotide), FADH
2
(reduced flavin-adenine dinucleotide), FMNH
2
(reduced flavin mononucleotide), sodium pyruvate, sodium dithionite, N-acetylcysteine, reduced glutathione or any mixture thereof. In another embodiment, the reducing agent is L-ascorbic acid.
Thromboxane receptor antagonists include ONO-3708, Seratrodast, Rodigrel, Daltroban, Sulotroban, AH 23848, GR 32191, ICI 192605, SQ 28668, SQ 28913, SQ 29548, or any mixture thereof. Two preferred thromboxane receptor antagonists are ONO-3708 and Seratrodast.
In accordance with the invention, the potentiating amount of the thromboxane receptor antagonist and reducing agent provide at least a 15% decrease in the coronary perfusion pressure of the subject as compared to the organic nitrate alone. More preferable, the potentiating amount provides at least a 25% decrease, with at least a 40% or greater decrease in coronary perfusion pressure being preferred.
The present invention also provides a formulation for inducing vasodilation which includes an effective amount of the organic nitrate and a potentiating amount of the thromboxane receptor antagonist and the reducing agent. Potentiating amounts for the formulation are an organic nitrate:thromboxane receptor antagonist ratio of 1:1 to 1:2000, and an organic nitrate:reducing agent ratio of 1:10 to 1:5×10
7
. Preferable are organic nitrate:thromboxane receptor antagonist ratios of 1:1 to 1:1000, and organic nitrate:reducing agent ratios of 1:10 to 1:5×10
5
with organic nitrate:thromboxane receptor antagonist ratios of 1:1 to 1:100, and organic nitrate:reducing agent ratio of 1:10 to 1:5

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods of potentiating organic nitrates having vasodilating... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods of potentiating organic nitrates having vasodilating..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods of potentiating organic nitrates having vasodilating... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2469172

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.