Methods of modulating NF-kB transcription factor

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S333000, C514S443000, C514S483000

Reexamination Certificate

active

06545027

ABSTRACT:

BACKGROUND OF THE INVENTION
The control of all biological processes results from a balance between various positive and negative-acting factors which interact with DNA regulatory elements and with each other. These protein factors play a critical role in controlling the expression of proteins, and thus are critical to both normal and pathological processes. Understanding these protein factors and how they modulate gene expression is key to strategies for the development of agents to control disease initiation and progression.
A number of these important trans-acting regulatory proteins have been described in the literature and have been demonstrated to play a role in pathological processes. One such factor is NF-kB, a member of the Rel family of eukaryotic transcription factors. The Rel family of proteins controls a wide variety of cellular responses. For example, they are key regulatory molecules for signal-responsive induction of gene expression, host-defensive responses, and growth responses. The ability to specifically modulate the binding of NF-kB and other members of the Rel family would be useful for the treatment of a wide variety of conditions ranging from septic shock, graft vs host reactions, acute inflammatory conditions, systemic inflammatory responses, acute phase responses, vascular coagulation, ischemic reperfusion injury, atherosclerosis, HIV infection and cancer.
Another transcription factor of importance is BEF-1, a member of the NF-1 family of transcriptional regulators. BEF-1 was first identified as a transcriptional repressor within the enhancer of human BK virus. The binding site for this ubiquitous transcription factor is present in the regulatory regions of a number of human genes. For example, BEF-1 has been shown to control the expression of human apolipoprotein E, a major constituent of plasma lipoprotein that functions in lipid transport and redistribution (reverse cholesterol transport). ApoE also probably plays an important role in inhibiting the development and/or progression of atherosclerosis. Both the level and binding activity of BEF-1 have been shown to be regulated via intracellular signaling, as demonstrated by effects mediated through the viral oncogene Ela, cytokines and also through tyrosine phosphorylation.
We have found that BEF-1 binding sites can overlap with NF-kB binding sites (e.g.., vascular adhesion molecule-1: VCAM-1). Conversely, BEF-1 binding sites such as in the apoE promoter can bind Rel proteins. Thus, both BEF-1 and NF-kB may compete for binding at the same site. Furthermore, compounds that modulate the levels of BEF-1 activity may be effective not only in modulating genes controlled by BEF-1, but those controlled by NF-kB as well.
SUMMARY OF THE INVENTION
This invention provides methods for modulating NF-kB transcription factor comprising administering to a human in need thereof an effective amount of a compound of formula I
wherein
R
1
and R
3
are independently hydrogen,
 wherein Ar is optionally substituted phenyl;
R
2
is selected from the group consisting of pyrrolidino, hexamethyleneimino, and piperidino; and pharmaceutically acceptable salts and solvates thereof.


REFERENCES:
patent: 4133814 (1979-01-01), Jones et al.
patent: 4380635 (1983-04-01), Peters
patent: 4418068 (1983-11-01), Jones
patent: 5075321 (1991-12-01), Schreiber
patent: 5393763 (1995-02-01), Black et al.
patent: 6410516 (2002-06-01), Baltimore et al.
patent: 652003 (1995-05-01), None
patent: 659427 (1995-06-01), None
patent: 664121 (1995-07-01), None
patent: 664126 (1995-07-01), None
patent: 668075 (1995-08-01), None
patent: WO 9612491 (1996-05-01), None
Levenson et al., “Transfection of human estrogen receptor (ER) cDNA into ER-negative mammalian cell lines”, J. Steroid Biochem. Mol. Biol., vol. 51, No. 5-6, 1994 (pp. 229-239).
Yang et al., “Raloxifene, an antiestrogen, stimulates the effects of estrogen on inhibiting bone resorption through regulating TGF-beta-3 expression in bone”, Journal of Bone and Mineral Research, vol. 8, No. s1, Aug., 1993, (p. s118).
Galien et al., “Involvement of CCAAT/enhancer-binding protein and nuclear factor kappaB binding sites in interleukin-6 promoter inhibition by estrogens”, Molecular Endocrinology, vol. 10, No. 6, Jun., 1996 (pp. 713-722).
Draper et al., “Effects of Raloxifene (LY139481 HCl) on Biochemical Markers of Bone and Lipid Metabolism i Healthy Postmenopausal Women”, Hong Kong, Fourth Int'l Symp. on Osteoporosis, Mar. 29, 1993.
Bryant et al., “Protection from Bone Loss and Lowering of Serum Cholesterol in the Absence of Uterine Stimulation in Ovariectomized Rats”, Am Soc. Bone & Min. Res., Tampa, Sep. 18-22, 1993.
Bryant et al., “Raloxifene is a Tissue Specific Estrogen Agonist”, Am Soc. Bone & Min. Res., Tampa, Sep. 18-22, 1993.
Frolick et al., “In Vivo and In Vitro Metabolism of Raloxifene”, Am. Soc. Bone & Min. Res., Tampa, Sep. 18-22, 1993.
Glasebrook et al., “Multiple Binding Sites for the Anti-estrogen Raloxifene”, Am Soc. Bone & Min. Res., Tampa, Sep. 18-22, 1993.
Hock et al., “Combination of Raloxifene and Human Parathyroid Hormone 1-34; Increased Femur Bone Mass in Young Ovariectomized (OVX) Rats”, Am. Soc. Bone & Min. Res., Tampa, Sep. 18-22, 1993.
Sato et al., “DEXA Analysis of Raloxifene Effects on the Bones From Ovariectomized Rats”, Am. Soc. for Bone and Min. Res., Tampa, Sep. 18-22, 1993.
Yang et al., “Raloxifene an Anti-Estrogen, Simulates the Effects of Estrogen in Inhibiting Bone Resorption Through Regulating TGFB-3 Expression in Bone;”. Am Soc. for Bone and Min. Res., Tampa, Sep. 18-22, 1993.
Black et al., “Distinct, Structure-Related Profiles of Estrogenic and Anti-Estrogenic Activity in the Tamoxifen and LY117018 Series;” The Endocrine Society, Abstract 1982.
Black et al., “Uterine Bioassay of Tamoxifen, Trioxifene, and New Estrogen Antagonist (LY1170118) in Rats and Mice,” Life Sciences, 26:1980, 1453-1458.
Black et al., “Differential Interaction of Antiestrogens with Cytosol Estrogen Receptors,” Molecular and Cellular Endocrinology, 22:1981, 95-103.
Black et al., “Evidence for Biological Action of the Antiestrogens LY117018 and Tamoxifen by Different Mechanisms,” Endocrinology 109;1981, 987-989.
Black, L.J. “Biological Actions and Binding Properties of a New Estrogen Antagosist LY117018,” In: Homone Antagonists, 129-82, 1982 (M.K. Agarwal ed.) Walter de Gruyter and Co., Berlin New York.
Black et al., LY156758: A Unique Antiestrogen Displaying High Affinity for Estrogen Receptors, Negligible Estrogenic Activity and Near-Total Estrogen Antagonism in Vivo. Presented at the Fifth Annual San Antonio Breast Cancer Symposium, San Antonio, Texas, Nov. 5-6, 1982.
Black et al., The Antiestrogenic Action of LY139481: Species Uniformity Duration of Action and Kinetics of 3H-LY139481 Distribution In Vivo. Sixty-fifth Annual Meeting of the Endocrine Society, San Antonio, Texas, Jun. 8-10, 1983, abs. 93.
Black et al., Antagonism of Estrogen Action with a New benzothiophene Derived Antiestrogen, Life Sciences, 32:1983. 1031-1036.
Black et al., The Relationship of the Antiestrogenic Efficacy of LY156758 to its Pharmacokinetics and Metabolism Following Oral Administration to Adult Ovariectomized Rats, Seventh International Congress of Endocrinology, Quebec City, Canada, Jul. 1-7, 1984, abs. 323.
Black et al., Synthesis and Antiestrogenic Activity of [3,4-Dihydro-2 (4-methoxyphenyl)-l-napthalenyl] [4-[2-pyrrolidinyl) ethoxyl]-phenyl] methanone, methanesulfonic acid salt, Journal of Medicinal Chemistry 22;1979, 962-966.
Black et al., Antiestrogens 2. Structure Activity Studies in a Series of 3-Aroyl-2-arylbenzo[b]thiophene Derivatives Leading to [6-Hydroxy-2-(4-hydroxyphenyl)benzo[b]thien-3-yl][4-[-(1-piperidinyl)ethoxy]-phenyl]methanone Hydrochloride (LY156758), a Remarkably Effective Estrogen Antagonist with Only Minimal Intrinsic Estrogenicity, J. Med. Chem. 27(8), 1984, 1057-1066.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods of modulating NF-kB transcription factor does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods of modulating NF-kB transcription factor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods of modulating NF-kB transcription factor will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3030626

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.