Methods of modifying eukaryotic cells

Chemistry: molecular biology and microbiology – Process of mutation – cell fusion – or genetic modification – Introduction of a polynucleotide molecule into or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S325000, C435S462000, C435S440000, C435S352000, C435S354000, C800S018000, C800S013000, C800S014000

Reexamination Certificate

active

06586251

ABSTRACT:

FIELD OF THE INVENTION
The field of this invention is a method for engineering and utilizing large DNA vectors to target, via homologous recombination, and modify, in any desirable fashion, endogenous genes and chromosomal loci in eukaryotic cells. These large DNA targeting vectors for eukaryotic cells, termed LTVECs, are derived from fragments of cloned genomic DNA larger than those typically used by other approaches intended to perform homologous targeting in eukaryotic cells. The field of the invention further provides for a rapid and convenient method of detecting eukaryotic cells in which the LTVEC has correctly targeted and modified the desired endogenous gene(s) or chromosomal locus (loci). The field also encompasses the use of these cells to generate organisms bearing the genetic modification, the organisms, themselves, and methods of use thereof.
INTRODUCTION
The use of LTVECs provides substantial advantages over current methods. For example, since these are derived from DNA fragments larger than those currently used to generate targeting vectors, LTVECs can be more rapidly and conveniently generated from available libraries of large genomic DNA fragments (such as BAC and PAC libraries) than targeting vectors made using current technologies. In addition, larger modifications as well as modifications spanning larger genomic regions can be more conveniently generated than using current technologies.
Furthermore, the present invention takes advantage of long regions of homology to increase the targeting frequency of “hard to target” loci, and also diminishes the benefit, if any, of using isogenic DNA in these targeting vectors.
The present invention thus provides for a rapid, convenient, and streamlined method for systematically modifying virtually all the endogenous genes and chromosomal loci of a given organism.
BACKGROUND OF THE INVENTION
Gene targeting by means of homologous recombination between homologous exogenous DNA and endogenous chromosomal sequences has proven to be an extremely valuable way to create deletions, insertions, design mutations, correct gene mutations, introduce transgenes, or make other genetic modifications in mice. Current methods involve using standard targeting vectors, with regions of homology to endogenous DNA typically totaling less than 10-20 kb, to introduce the desired genetic modification into mouse embryonic stem (ES) cells, followed by the injection of the altered ES cells into mouse embryos to transmit these engineered genetic modifications into the mouse germline (Smithies et al., Nature, 317:230-234, 1985; Thomas et al., Cell, 51:503-512, 1987; Koller et al., Proc Natl Acad Sci USA, 86:8927-8931, 1989; Kuhn et al., Science, 254:707-710, 1991; Thomas et al., Nature, 346:847-850, 1990; Schwartzberg et al., Science, 246:799-803, 1989; Doetschman et al., Nature, 330:576-578, 1987; Thomson et al., Cell, 5:313-321, 1989; DeChiara et al., Nature, 345:78-80, 1990; U.S. Pat. No. 5,789,215, issued Aug. 4, 1998 in the name of GenPharm International). In these current methods, detecting the rare ES cells in which the standard targeting vectors have correctly targeted and modified the desired endogenous gene(s) or chromosomal locus(loci) requires sequence information outside of the homologous targeting sequences contained within the targeting vector. Assays for successful targeting involve standard Southern blotting or long PCR (Cheng, et al., Nature, 369:684-5, 1994; Foord and Rose, PCR Methods Appl, 3:S149-61, 1994; Ponce and Micol, Nucleic Acids Res, 20:623, 1992; U.S. Pat. No. 5,436,149 issued to Takara Shuzo Co., Ltd.) from sequences outside the targeting vector and spanning an entire homology arm (see Definitions); thus, because of size considerations that limit these methods, the size of the homology arms are restricted to less than 10-20 kb in total (Joyner, The Practical Approach Series, 293, 1999).
The ability to utilize targeting vectors with homology arms larger than those used in current methods would be extremely valuable. For example, such targeting vectors could be more rapidly and conveniently generated from available libraries containing large genomic inserts (e.g. BAC or PAC libraries) than targeting vectors made using current technologies, in which such genomic inserts have to be extensively characterized and trimmed prior to use. In addition, larger modifications as well as modifications spanning larger genomic regions could be more conveniently generated and in fewer steps than using current technologies. Furthermore, the use of long regions of homology could increase the targeting frequency of “hard to target” loci in eukaryotic cells, since the targeting of homologous recombination in eukaryotic cells appears to be related to the total homology contained within the targeting vector (Deng and Capecchi, Mol Cell Biol, 12:3365-71, 1992). In addition, the increased targeting frequency obtained using long homology arms could diminish any potential benefit that can be derived from using isogenic DNA in these targeting vectors.
The problem of engineering precise modifications into very large genomic fragments, such as those cloned in BAC libraries, has largely been solved through the use of homologous recombination in bacteria (Zhang, et al., Nat Genet, 20:123-8, 1998; Yang, et al., Nat Biotechnol, 15:859-65, 1997; Angrand, et al., Nucleic Acids Res, 27:e16, 1999; Muyrers, et al., Nucleic Acids Res, 27:1555-7, 1999; Narayanan, et al., Gene Ther, 6:442-7, 1999), allowing for the construction of vectors containing large regions of homology to eukaryotic endogenous genes or chromosomal loci. However, once made, these vectors have not been generally useful for modifying endogenous genes or chromosomal loci via homologous recombination because of the difficulty in detecting rare correct targeting events when homology arms are larger than 10-20 kb (Joyner, The Practical Approach Series, 293, 1999). Consequently, vectors generated using bacterial homologous recombination from BAC genomic fragments must still be extensively trimmed prior to use as targeting vectors (Hill et al., Genomics, 64:111-3, 2000). Therefore, there is still a need for a rapid and convenient methodology that makes possible the use of targeting vectors containing large regions of homology so as to modify endogenous genes or chromosomal loci in eukaryotic cells.
In accordance with the present invention, Applicants provide novel methods that enables the use of targeting vectors containing large regions of homology so as to modify endogenous genes or chromosomal loci in eukaryotic cells via homologous recombination. Such methods overcome the above-described limitations of current technologies. In addition, the skilled artisan will readily recognize that the methods of the invention are easily adapted for use with any genomic DNA of any eukaryotic organism including, but not limited to, animals such as mouse, rat, other rodent, or human, as well as plants such as soy, corn and wheat.
SUMMARY OF THE INVENTION
In accordance with the present invention, Applicants have developed a novel, rapid, streamlined, and efficient method for creating and screening eukaryotic cells which contain modified endogenous genes or chromosomal loci. This novel methods combine, for the first time:
1. Bacterial homologous recombination to precisely engineer a desired genetic modification within a large cloned genomic fragment, thereby creating a large targeting vector for use in eukaryotic cells (LTVECs);
2. Direct introduction of these LTVECs into eukaryotic cells to modify the endogenous chromosomal locus of interest in these cells; and
3. An analysis to determine the rare eukaryotic cells in which the targeted allele has been modified as desired, involving an assay for modification of allele (MOA) of the parental allele that does not require sequence information outside of the targeting sequence, such as, for example, quantitative PCR.
A preferred embodiment of the invention is a method for genetically modifying an endogenous gene or chromosomal locus in eukaryotic cells, comprising: a)

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods of modifying eukaryotic cells does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods of modifying eukaryotic cells, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods of modifying eukaryotic cells will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3073136

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.