Methods of making negative thermal expansion glass-ceramic...

Glass manufacturing – Processes – With chemically reactive treatment of glass preform

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C065S033100, C065S033800, C065S033900

Reexamination Certificate

active

06209352

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to a temperature compensated, athermal optical device and, in particular, to an optical fiber reflective grating device incorporating a negative expansion beta-eucryptite substrate to produce an athermal optical fiber reflective grating device, and to a method of producing the athermal optical fiber reflective grating device.
BACKGROUND OF THE INVENTION
Index of refraction changes induced by UV light are useful in producing complex, narrow-band optical components such as filters and channel add/drop devices. These devices can be an important part of multiple-wavelength telecommunication systems. The prototypical photosensitive device is a reflective grating (or Bragg grating), which reflects light over a narrow wavelength band. Typically, these devices have channel spacings measured in nanometers.
There are already known various constructions of optical filters, among them such which utilize the Bragg effect for wavelength selective filtering. U.S. Pat. No. 4,725,110 discloses one method for constructing a filter which involves imprinting at least one periodic grating in the core of the optical fiber by exposing the core through the cladding to the interference pattern of two ultraviolet beams that are directed against the optical fiber at two angles relative to the fiber axis that complement each other to 180°. This results in a reflective grating which is oriented normal to the fiber axis. The frequency of the light reflected by such an optical fiber with the incorporated grating filter is related to the spacing of the grating which varies either with the strain to which the grating region is subjected, or with the temperature of the grating region, in a clearly defined relationship, which is substantially linear to either one of these paraneters.
For a uniform grating with spacing L, in a fiber with an effective index of refraction n and expansion a, the variation of center reflective wavelength, 1
r
is given by
d
1
r
/dT=
2
L[dn/dT+na]
In silica and germania-silica fiber reflective gratings the variation in center wavelength is dominated by the first term in the brackets, the change of index of refraction with temperature. The expansion term contributes less than ten percent of the total variability. d1
r
/dT is typically 0.01 nm/° C. for a grating with a peak reflectance at 1550 nm.
One practical difficulty in the use of these gratings is their variation with temperature. In as much as the frequency of the light reflected by the fiber grating varies with the temperature of the grating region this basic filter cannot be used in applications where the reflected light frequency is to be independent of temperature. Methods of athermalizing the fiber reflective grating would increase the applications for such gratings.
One method of athermalizing a fiber reflective grating is to thermally control the environment of the grating with an actively controlled thermal stabilization system. Such thermal stabilization is costly to implement and power, and its complexity leads to reliability concerns.
A second athermalization approach is to create a negative expansion which compensates the dn/dT. Devices which employ materials with dissimilar positive thermal expansions to achieve the required negative expansion are known.
U.S. Pat. No. 5,042,898 discloses a temperature compensated, embedded grating, optical waveguide light filtering device having an optical fiber grating. Each end of the fiber is attached to a different one of two compensating members made of materials with such coefficients of thermal expansion relative to one another and to that of the fiber material as to apply to the fiber longitudinal strains, the magnitude of which varies with temperature in such a manner that the changes in the longitudinal strains substantially compensate for these attributable to the changes in the temperature of the grating.
Yoffe, G. W. et al in “Temperature-Compensated Optical-Fiber Bragg Gratings” OFC'95 Technical Digest, paper WI4, discloses a device with a mechanical arrangement of metals with dissimilar thermal expansions which causes the distance between the mounting points of an optical fiber to decrease as the temperature rises and reduce the strain in a grating.
Such devices have several undesirable properties. First, fabricating a reliable union with the fiber is difficult in such devices. Second, the mechanical assembly and adjustment of such devices make them costly to fabricate. These systems also show hysteresis, which makes the performance degrade under repeated thermal cycling. Finally some of the approaches require that the grating, which can be several centimeters long, be suspended, making them incompatible with other requirements of passive devices such as insensitivity to mechanical shock and vibration.
Another method of incorporating negative expansion which may be envisaged is to provide a substrate for mounting the optical fiber grating thereon which is fabricated from material with an intrinsic negative coefficient of expansion.
U.S. Pat. No. 4,209,229 discloses lithium-alumina-silica type ceramic glasses, particularly those having stoichiometries, on a mole ratio basis, in the range of 1 Li
2
O: 0.5-1.5 Al
2
O
3
: 3.0-4.5 SiO
2
, which are particularly adapted for use as protective outer layers over fused silicas and other cladding materials for optical fiber waveguide members. When these lithium aluminosilicate glasses are cerammed, that is, heat treated to produce nucleated crystallizations, the dominant crystal phase developed is either beta-eucryptite or beta-quartz solid solution. Nucleating agents such as TiO
2
and ZrO
2
are used to initiate crystallization of the glass. The glasses produced in this manner have negative coefficients of expansion averaging about −1.4¥10
−7
/° C. over the range of 0°-600° C. Thin layers of these lithium aluminosilicate glasses can be cerammed to develop fine-grained crystal phases by heat treating a coated filament at 700-1400° C. for a time not exceeding one minute. The cooled outer layer exerts a compressive stress on the coated fiber.
U.S. Pat. No. 5,426,714 disclose optical fiber couplers which utilize beta-eucryptite lithium aluminosilicates having a low or negative coefficient of thermal expansion as fillers for polymeric resins. The glass-ceramics were obtained by melting the composition in a platinum crucible at 1650° C. The glass was then drigaged, cerammed and ground to a powder. A beta-eucryptite composition of 15.56 wt. % Li
2
O, 53.125 wt. % Al
2
O
3
, 31.305 wt. % SiO
2
having a negative coefficient of thermal expansion of −86¥10
−7
/° C. measured between −40° C. and +80° C. is disclosed (Col. 4, lines 24-28).
It is an object of this invention to provide a temperature compensated optical device which is an athermal device.
It is an object of this invention to provide a temperature compensated optical fiber reflective grating device which is an athermal device.
It is an object of this invention to provide a temperature compensated optical fiber reflective grating device which tolerates shock and vibration.
It is an object of this invention to provide a temperature compensated optical fiber reflective grating device which has a stable center wavelength.
It is an object of this invention to provide a temperature compensated optical fiber reflective grating device in which the grating region of the fiber is straight.
SUMMARY OF THE INVENTION
Briefly stated the invention provides a method for producing an athermal optical device comprising; providing a negative expansion substrate having an upper surface; mounting a thermally sensitive, positive expansion optical component onto the substrate upper surface and affixing the component to the substrate at at least two spaced apart locations.
In another aspect of the invention there is provided an athermal optical device comprising; a negative expansion substrate having an upper surface; a thermally sensitive, positive expansion optical component affixed

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods of making negative thermal expansion glass-ceramic... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods of making negative thermal expansion glass-ceramic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods of making negative thermal expansion glass-ceramic... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2535037

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.