Plastic and nonmetallic article shaping or treating: processes – Forming continuous or indefinite length work – Shaping by extrusion
Reexamination Certificate
2001-05-17
2003-12-02
Tentoni, Leo B. (Department: 1732)
Plastic and nonmetallic article shaping or treating: processes
Forming continuous or indefinite length work
Shaping by extrusion
C264S210600
Reexamination Certificate
active
06656404
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to improvements in preventing heat- and moisture-shrink problems in specific polypropylene fibers. Such fibers require the presence of certain compounds that quickly and effectively provide rigidity to the target polypropylene fiber after heat-setting. Generally, these compounds include any structure that nucleates polymer crystals within the target polypropylene after exposure to sufficient heat to melt the initial pelletized polymer and upon allowing such a melt to cool. The compounds must nucleate polymer crystals at a higher temperature than the target polypropylene without the nucleating agent during cooling. In such a manner, the “rigidifying” nucleator compounds provide nucleation sites for polypropylene crystal growth. After drawing the nucleated composition into fiber form, the fiber is then exposed to sufficient heat to grow the crystalline network, thus holding the fiber in a desired position. The preferred “rigidifying” compounds include dibenzylidene sorbitol based compounds, as well as less preferred compounds, such as sodium benzoate, certain sodium and lithium phosphate salts (such as sodium 2,2′-methylene-bis-(4,6-di-tert-butylphenyl)phosphate, otherwise known as NA-11). Specific methods of manufacture of such fibers, as well as fabric articles made therefrom, are also encompassed within this invention.
DISCUSSION OF THE PRIOR ART
There has been a continued desire to utilize polypropylene fibers in various different products, ranging from apparel to carpet backings (as well as carpet pile fabrics) to reinforcement fabrics, and so on. Polypropylene fibers exhibit excellent strength characteristics, highly desirable hand and feel, and do not easily degrade or erode when exposed to certain “destructive” chemicals. However, even with such impressive and beneficial properties and an abundance of polypropylene, which is relatively inexpensive to manufacture and readily available as a petroleum refinery byproduct, such fibers are not widely utilized in products that are exposed to relatively high temperatures during use, cleaning, and the like. This is due primarily to the high and generally non-uniform heat- and moisture-shrink characteristics exhibited by typical polypropylene fibers. Such fibers are not heat stable and when exposed to standard temperatures (such as 150° C. and 130° C. temperatures), the shrinkage range from about 5% (in boiling water) to about 7-8% (for hot air exposure) to 12-13% (for higher temperature hot air). These extremely high and varied shrink rates thus render the utilization and processability of highly desirable polypropylene fibers very low, particularly for end-uses that require heat stability (such as apparel, carpet pile, carpet backings, molded pieces, and the like). To date, there has been no simple solution to such a problem. Some ideas have included narrowing and controlling the molecular weight distribution of the polypropylene components themselves in each fiber or mechanically working the target fibers prior to and during heat-setting. Unfortunately, molecular weight control is extremely difficult to accomplish initially, and has only provided the above-listed shrink rates (which are still too high for widespread utilization within the fabric industry). Furthermore, the utilization of very high heat-setting temperatures during mechanical treatment has, in most instances, resulted in the loss of good hand and feel to the subject fibers. Another solution to this problem is preshrinking the fibers, which involves winding the fiber on a crushable paper package, allowing the fiber to sit in the oven and shrink for long times, (crushing the paper package), and then rewinding on a package acceptable for further processing. This process, while yielding an acceptable yarn, is expensive, making the resulting fiber uncompetitive as compared to polyester and nylon fibers. As a result, there has not been any teaching or disclosure within the pertinent prior art providing any heat- and/or moisture-shrink improvements in polypropylene fiber technology.
DESCRIPTION OF THE INVENTION
It is thus an object of the invention to provide improved shrink rates for standard polypropylene fibers. A further object of the invention is to provide a class of additives that, in a range of concentrations, will give low shrinkage. A further object of the invention is to provide a specific method for the production of nucleator-containing polypropylene fibers permitting the ultimate production of such low-shrink fabrics therewith. Accordingly, this invention encompasses a polypropylene fiber possessing at most 5,000 denier per filament and exhibiting a heat-shrinkage in at least 150° C. hot air of at most 11%, wherein said fiber further comprises at least one nucleating agent. Also, this invention encompasses a polypropylene fiber possessing at most 5,000 denier per filament and exhibiting a heat-shrinkage in at least 150° C. hot air of at most 11%, wherein said fiber further comprises at least one nucleating agent, and wherein said fiber further exhibits a long period of at least 20 nm as measured by small-angle x-ray scattering. Furthermore, this invention encompasses a polypropylene fiber possessing at most 5,000 denier per filament and comprising at least one nucleating agent, and wherein said fiber further exhibits a long period of at least 20 nm as measured by small-angle x-ray diffraction spectroscopy. Additionally, this invention encompasses a polypropylene fiber possessing at most 5,000 denier per filament and exhibiting a peak crystallization temperature of at least 115° C. as measured by differential scanning calorimetry in accordance with a modified ASTM Test Method D3417-99 at a cooling rate of 20° C./min, and wherein said fiber further exhibits a long period of at least 20 nm as measured by small-angle x-ray scattering. Certain yarns and fabric articles comprising such inventive fibers are also encompassed within this invention.
Furthermore, this invention also concerns a method of producing such fibers comprising the sequential steps of a) providing a polypropylene composition in pellet or liquid form comprising at least 100 ppm by weight of a nucleator compound; b) melting and mixing said polypropylene composition of step “a” to form a substantially homogeneous molten plastic formulation; c) extruding said plastic formulation to form a fiber structure; d) mechanically drawing said extruded fiber (optionally while exposing said fiber to a temperature of at most 105° C.); and e) exposing said drawn fiber of step “d” to a subsequent heat-setting temperature of at least 110° C. Preferably, step “b” will be performed at a temperature sufficient to effectuate the melting of all polymer constituent (e.g., polypropylene), and possibly the remaining compounds, including the nucleating agent, as well (melting of the nucleating agent is not a requirement since some nucleating agents do not melt upon exposure to such high temepratures). Thus, temperatures within the range of from about 175 to about 300° C., as an example (preferably from about 200 to about 275°, and most preferably from about 220 to about 250° C., are proper for this purpose. The extrusion step (“c”) should be performed while exposing the polypropylene formulation to a temperature of from about 185 to about 300° C., preferably from about 210 to about 275° C., and most preferably from about 230 to about 250° C., basically sufficient to perform the extrusion of a liquefied polymer without permitting breaking of any of the fibers themselves during such an extrusion procedure. The drawing step may be performed at a temperature which is cooler than normal for a standard polypropylene (or other polymer) fiber drawing process. Thus, if a cold-drawing step is followed, such a temperature should be below about 105° C., more preferably below about 100° C., and most preferably below about 90° C. Of course, higher temperatures may be used if no such cold drawing step is followed. The final heat-setting temperature is necessary to “lock” the polypro
Mehl Nathan A.
Morin Brian G.
Parks William S.
Milliken & Company
Moyer Terry T.
Parks William S.
Tentoni Leo B.
LandOfFree
Methods of making low-shrink polypropylene fibers does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Methods of making low-shrink polypropylene fibers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods of making low-shrink polypropylene fibers will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3146028