Methods of increasing myotube formation or survival or...

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Peptide containing doai

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S012200, C530S350000

Reexamination Certificate

active

06444642

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention relates to prophylactic or affirmative treatment of diseases and disorders of the musculature by administering polypeptides found in vertebrate species, which polypeptides are growth, differentiation and survival factors for muscle cells.
Muscle tissue in adult vertebrates will regenerate from reserve myoblasts called satellite cells. Satellite cells are distributed throughout muscle tissue and are mitotically quiescent in the absence of injury or disease. Following muscle injury or during recovery from disease, satellite cells will reenter the cell cycle, proliferate and 1) enter existing muscle fibers or 2) undergo differentiation into multinucleate myotubes which form new muscle fiber. The myoblasts ultimately yield replacement muscle fibers or fuse into existing muscle fibers, thereby increasing fiber girth by the synthesis of contractile apparatus components. This process is illustrated, for example, by the nearly complete regeneration which occurs in mammals following induced muscle fiber degeneration; the muscle progenitor cells proliferate and fuse together regenerating muscle fibers.
Several growth factors which regulate the proliferation and differentiation of adult (and embryonic) myoblasts in vitro have been identified. Fibroblast growth factor (FGF) is mitogenic for muscle cells and is an inhibitor of muscle differentiation. Transforming growth factor &bgr; (TGF&bgr;) has no effect on myoblast proliferation, but is an inhibitor of muscle differentiation. Insulin-like growth factors (IGFs) have been shown to stimulate both myoblast proliferation and differentiation in rodents. Platelet derived growth factor (PDGF) is also mitogenic for myoblasts and is a potent inhibitor of muscle cell differentiation. (For a review of myoblast division and differentiation see: Florini and Magri, 1989:256:C701-C711).
In vertebrate species both muscle tissue and neurons are potential sources of factors which stimulate myoblast proliferation and differentiation. In diseases affecting the neuromuscular system which are neural in origin (i.e., neurogenic), the muscle tissue innervated by the affected nerve becomes paralyzed and wastes progressively. During peripheral nerve regeneration and recovery from neurologic and myopathic disease, neurons may provide a source of growth factors which elicit the muscle regeneration described above and provide a mechanism for muscle recovery from wasting and atrophy.
A recently described family of growth factors, the neuregulins, are synthesized by motor neurons (Marchioni et al.
Nature
362:313, 1993) and inflammatory cells (Tarakhovsky et al.,
Oncogene
6:2187-2196 (1991)). The neuregulins and related p185
erbB2
binding factors have been purified, cloned and expressed (Benveniste et al.,
PNAS
82:3930-3934, 1985; Kimura et al.,
Nature
348:257-260, 1990; Davis and Stroobant,
J. Cell. Biol.
110:1353-1360, 1990; Wen et al.,
Cell
69:559, 1992; Yarden and Ullrich,
Ann. Rev. Biochem.
57:443, 1988; Holmes et al.,
Science
256:1205, 1992; Dobashi et al.,
Proc. Natl. Acad. Sci.
88:8582, 1991; Lupu et al.,
Proc. Natl. Acad. Sci.
89:2287, 1992). Recombinant neuregulins have been shown to be mitogenic for peripheral glia (Marchionni et al., Nature 362:313, 1993) and have been shown to influence the formation of the neuromuscular junction (Falls et al., Cell 72:801, 1993). Thus the regenerating neuron and the inflammatory cells associated with the recovery from neurogenic disease and nerve injury provide a source of factors which coordinate the remyelination of motor neurons and their ability to form the appropriate connection with their target. After muscle has been reinnervated the motor neuron may provide factors to muscle, stimulating muscle growth and survival.
Currently, there is no useful therapy for the promotion of muscle differentiation and survival. Such a therapy would be useful for treatment of a variety of neural and muscular diseases and disorders.
SUMMARY OF THE INVENTION
We have discovered that increased mitogenesis differentiation and survival of muscle cells may be achieved using proteins heretofore described as glial growth factors, acetylcholine receptor inducing activity (ARIA), heregulins, neu differentiation factor, and, more generally, neuregulins. We have discovered that these compounds are capable of inducing both the proliferation of muscle cells and the differentiation and survival of myotubes. These phenomena may occur in cardiac and smooth muscle tissues in addition to skeletal muscle tissues. Thus, the above compounds, regulatory compounds which induce synthesis of these compounds, and small molecules which mimic these compounds by binding to the receptors on muscle or by stimulating through other means the second messenger systems activated by the ligand-receptor complex are all extremely useful as prophylactic and affirmative therapies for muscle diseases.
A novel aspect of the invention involves the use of the above named proteins as growth factors to induce the mitogenesis, survival, growth and differentiation of muscle cells. Treating of the muscle cells to achieve these effects may be achieved by contacting muscle cells with a polypeptide described herein. The treatments may be provided to slow or halt net muscle loss or to increase the amount or quality of muscle present in the vertebrate.
These factors may be used to produce muscle cell mitogenesis, differentiation, and survival in a vertebrate (preferably a mammal, more preferably a human) by administering to the vertebrate an effective amount of a polypeptide or a related compound. Neuregulin effects on muscle may occur, for example, by causing an increase in muscle performance by inducing the synthesis of particular isoforms of the contractile apparatus such as the myosin heavy chain slow and fast isoforms; by promoting muscle fiber survival via the induction of synthesis of protective molecules such as, but not limited to, dystrophin; and/or by increasing muscle innervation by, for example, increasing acetylcholine receptor molecules at the neuromuscular junction.
The term muscle cell as used herein refers to any cell which contributes to muscle tissue. Myoblasts, satellite cells, myotubes, and myofibril tissues are all included in the term “muscle cells” and may all be treated using the methods of the invention. Muscle cell effects may be induced within skeletal, cardiac and smooth muscles.
Mitogenesis may be induced in muscle cells, including myoblasts or satellite cells, of skeletal muscle, smooth muscle or cardiac muscle. Mitogenesis as used herein refers to any cell division which results in the production of new muscle cells in the patient. More specifically, mitogenesis in vitro is defined as an increase in mitotic index relative to untreated cells of 50%, more preferably 100%, and most preferably 300%, when the cells are exposed to labelling agent for a time equivalent to two doubling times. The mitotic index is the fraction of cells in the culture which have labelled nuclei when grown in the presence of a tracer which only incorporates during S phase (i.e., BrdU) and the doubling time is defined as the average S time required for the number of cells in the culture to increase by a factor of two.
An effect on mitogenesis in vivo is defined as an increase in satellite cell activation as measured by the appearance of labelled satellite cells in the muscle tissue of a mammal exposed to a tracer which only incorporates during S phase (i.e., BrdU). The useful therapeutic is defined in vivo as a compound which increases satellite cell activation relative to a control mammal by at least 10%, more preferably by at least 50%, and most preferably by more than 200% when the mammal is exposed to labelling agent for a period of greater than 15 minutes and tissues are assayed between 10 hours and 24 hours after administration of the mitogen at the therapeutic dose. Alternatively, satellite cell activation in vivo may be detected by monitoring the appearance of the intermediate filament vimentin by immunological or

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods of increasing myotube formation or survival or... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods of increasing myotube formation or survival or..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods of increasing myotube formation or survival or... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2899280

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.