Methods of identifying modulators of a prostaglandin receptor

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving antigen-antibody binding – specific binding protein...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S007100, C435S007210, C435S069100, C530S350000

Reexamination Certificate

active

06358694

ABSTRACT:

BACKGROUND OF THE INVENTION
The physiological actions of prostaglandin (PG)F
2&agr;
are mediated through interaction with the prostaglandin F
2&agr;
(FP) receptor. This receptor has not previously been isolated or purified. FP-encoding DNA and the amino acid sequence of the FP receptor protein was also not known FP receptors are normally found on a wide variety of cells and tissues including the small intestine, corpus luteum, placenta, ovary, brain, myometrium, lung, kidney, stomach, muscle, eye, uterus and trachea, in humans and other animals. Binding of prostaglandin to the FP receptor protein elicits an increase in intracellular calcium levels. This signal causes the tissues to respond, for example, by muscle contraction and in the eye indirectly causes a reduction in intraocular pressure. Studies on PGF
2&agr;
binding sites (FP receptors) have been performed using primarily corpus lutea tissue since PGF
2&agr;
is a potent luteolytic agent [Powell et al, 1974 Lancet, 1, pp 1120; Powell et al., 1974, Eur. J. Biochem., 41, pp 103-107]. Functional activities of the FP receptor have been studied using tissue preparations such as rabbit jejunum and the cat, bullock and dog iris sphincter tissues [Dong and Jones, 1982 Br. J. Pharmac., 76, pp 149-155; Welburm and Jones, 1978 Prostaglandins, 15, pp 287]. The above methods for studying FP receptor activities have several disadvantages in that they require tissue preparations containing several different but related receptor populations with different ligand binding properties making absolute potency and selectivity impossible. In addition, tissues contain very low levels of FP receptor and since tissue samples are required, compounds cannot satisfactorily be tested as effectors of the human FP receptor.
SUMMARY OF THE INVENTION
A novel prostaglandin receptor protein termed FP has been identified from human cells. A DNA molecule encoding the full length FP protein has been isolated and purified, and the nucleotide sequence has been determined. The FP encoding DNA has been cloned into expression vectors and these expression vectors, when introduced into recombinant host cells, cause the recombinant host cells to express a functional FP receptor protein. The novel FP protein, the FP-encoding DNA, the expression vectors and recombinant host cells expressing recombinant FP are useful in the identification of modulators of FP receptor activity.
A method of identifying FP receptor modulators is also disclosed which utilizes the recombinant FP expressing host cells. Modulators of FP activity are useful for the treatment of prostaglandin-related diseases and for modulating the effects of prostaglandins on the FP receptor.


REFERENCES:
Masu et al. ‘cDNA cloning of bovine substance-K receptor through oocyte expression system’ Nature, vol. 329, p 836 (1987).
Balapure et al. ‘Multiple Classes of Prostaglandin F2alpha Binding Sites in Subpopulations of Ovine Luteal Cells’, Biology of Reproduction, vol. 41, pp 385-392, 1989.
R. Coleman, et al., Characterisation Of The Prostanoid Receptors Mediating Contraction of Guinea-Pig Isolated Trachea, (1985), Prostaglandins, 29, pp. 363-375.
P. Davies, et. al., Prostaglandins and Inflammation, (1992), Inflammation: Basic Principles And Clinical Correlates, Gallin, Goldstein, Synderman, eds., 2nd Ed., pp. 123-138.
E. Horton, et al., Uterine Luteolytic Hormone: A Physiological Role for Prostaglandin F2a, (1976), Physiol. Rev., 56, pp. 595-651.
D. DeWitt, Prostaglandin endoperoxide synthase: regulation of enzyme expression, (1991), Biochim. Biophys, Acta, 1083, pp. 121-134.
J. Stjernschantz,et al., Phenyl substituted prostaglandin analogs for glaucoma treatment, (1992), Drugs Future, 17, pp. 691-704.
P. Racz, et al., Maintained Intraocular Pressure Reduction With Once-a-Day Application of a New Prostaglandin F2a Analogue (PhXA41), (1993), Arch. Opthalmol., 111, pp. 657-661.
J. Senior, et al., In vitro characterization of prostanoid FP-, DP-, IP- and TP-receptors on the non-pregnant human myometrium, (1992), Brit. J. Pharmacol., 107, pp. 215-221.
J. Senior, et al., In vitro characterization of prostanoid receptors on human myometrium at term pregnancy, (1993), Brit. J. Pharmacol., 108, pp. 501-506.
J. Csepli, et al., The Effect Of The Prostaglandin F2a Analogue ICI 81008 On Uterine Small Arteries And On Blood Pressure, (1975), Prostaglandins, 10, pp. 689-697.
R. Coleman, Methods in prostanoid receptor classification, (1987), Prostaglandins And Related Substances—A Practical Approach, IRL Press, 1st Ed., pp. 267-303.
R. Coleman, et al., A study of the prostanoid receptors mediating bronchocorstriction in the anaesthetized guinea-pig and dog, (1981), Brit. J. Pharmacol., 74, p. 913.
J. Barnard, et al., Evaluation of prostaglandin F2a and prostacyclin interactions in the isolated perfused rat lung, (1992), J. Appl. Physiol., 72, pp. 2469-2474.
J. Davis, et al., Prostaglandin F2a stimulates phosphatidylinositol 4,5-biphosphate hydrolysis and mobilizes intracellular Ca2+ in bovine luteal cells, (1987), Proc. Natl. Acad. Sci. U.S.A., 84, pp. 3728-3732.
J. Kitanaka, et al., Astrocytes Possess Prostaglandin F2a Receptors Coupled To Phospholipase C, (1991), Biochem. Biophys. Res. Commun., 178, pp. 946-952.
F. Black, et al., Activation of inositol phospholipid breakdown by prostaglandin F2a without any stimulation of proliferation in quiescent NIH-3T3 fibroblasts, (1990), Biochem. Journal, 266, pp. 661-667.
A. Nakao, et al., Characterization of Prostaglandin F2a Receptor of Mouse 3T3 Fibroblasts and Its Functional Expression inXenopus LaevisOocytes, (1993), J. Cell Physiol., 155, pp. 257-264.
W. Powell, et al., Prostaglandin F2a Receptor in Ovinecorpora lutea,(1974), Eur. J. Biochem., 41, pp. 103-107.
W. Powell, et al., Occurrence and Properties of a Prostaglandin F2a Receptor in BovineCorpora Lutea,(1975), Eur. J. Biochem., 56, pp. 73-77.
W. Powell, et al., Localization of a Prostaglandin F2a Receptor in BovineCorpus luteumPlasma Membranes, (1976), Eur. J. Biochem., 61, pp. 605-611.
M. Molnar, et al., PGF2a and PGE2 binding to rat myometrium during gestation, parturition, and postpartum, (1990), Am. J. Physiol., 258, pp. E740-E747.
Th. Bauknecht, et al., Distribution of prostaglandin E2 and prostaglandin F2a receptors in human myometrium, (1981), Acta Endocrinol., 98, pp. 446-450.
F. Neuschafer-Rube, et al., Characterization of prostaglandin-F2a-binding sites on rat hepatocyte plasma membranes, (1993), Eur. J. Biochem., 211, pp. 163-169.
M. Hirata, et al., Cloning and expression of cDNA for a human thromboxane A2 receptor, (1991), Nature, 349, pp. 617-620.
A. Honda, et al., Cloning and Expression of a cDNA for Mouse Prostaglandin E Receptor EP2 Subtype*, (1993), J. Biol. Chem., 268, pp. 7759-7762.
Y. Sugimoto, et al., Two Isoforms of the EP3 Receptor with Different Carboxyl-terminal Domains, (1993), J. Biol. Chem., 268, 2712-2718.
Y. Sugimoto, et al., Cloning and Expression of a cDNA for Mouse Prostaglandin E Receptor EP3 Subtype*, (1992), J. Biol. Chem., 267, pp. 6463-6466.
K. Bunce, et al., Differential Effects Of Prostaglandins On Unidirectional Absorption And Secretion In Rat Ileum, (1987), Gastroenterology, 92, p. 1332.
Y. Dong, et al., Prostaglandin E receptor subtypes in smooth muscle: agonist activities of stable prostacyclin analogues, (1986), Br. J. Pharmacol., 87, pp. 97-107.
B. Hedqvist, et al., Prostaglandin-Induced Neurotransmission Failure In The Field-Stimulated, Isolated Vas Deferens, (1972), Neuropharmacology, 11, pp. 177-187.
M. McKenniff et. al., Characterization of receptors mediating the contractile effects of prostanoids in guinea-pig and human airways, (1988), Eur. J. Pharmacol., 153, pp. 149-159.
R. Eglen, et al., The action of prostanoid receptor agonists and antagonists on smooth muscle and platelets, (1988), Br. J. Pharmacol., 94, pp. 591-601.
J. Louttit, et al., Prostanoid EP-Receptors In Pig Saphenous Vein, (7/26-31/92), 8th International Conf. on Prostaglandins, Abstract 258.
R. Lawrence, et al., Investigation of the prostaglandin E (EP-) receptor subtype me

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods of identifying modulators of a prostaglandin receptor does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods of identifying modulators of a prostaglandin receptor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods of identifying modulators of a prostaglandin receptor will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2865654

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.