Methods of identifying bacteria of specific bacterial genus,...

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving virus or bacteriophage

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06660470

ABSTRACT:

The present invention relates to a method of detection, identification and/or quantification of bacteria and to test kits for carrying it out. Particularly the method enables detection of organisms of specific bacterial genus, species or serotype, in isolated form or as contaminants in environmental or forensic samples, or in foodstuffs.
There are many requirements for methods of screening for specific bacteria, particularly those present in low numbers and in specific environments; for example, human bacterial pathogens in contaminated foods. Public health and quality control bodies demand rapid bacterial detection methods which have suitable levels of specificity and sensitivity, but few satisfactory methods exist.
It is known to detect specific bacteria by use of genetically engineered bioluminescent bacteriophages, virus particles which have had the ‘lux’ gene inserted into their genome, as described by Ulitzer and Kuhn, in Scholuerich et al (Eds.) ‘Bioluminescence and Chemiluminesconce-new perspectives’ pages 463-472; pub. (1987) by John Wiley and Sons. The ‘lux’ gene is that encoding for bacterial luciferase and the technique is based upon the fact that upon infection of a target bacterium, bacteriophage genes and the lux gene are injected into it and are subsequently expressed. The presence of the target bacterium is indicated by emission of light from the sample which can easily be measured. Most bacteria are susceptible to attack by bacteriophages (commonly called phages), many of which lyse or disrupt their host at the end of their replication process, and these interactions show varying degrees of host/phage specificity.
Schutzbank et al, The Use of “Bioluminescent Bacteriophages” for the Detection and Identification of Salmonella in Foods, Rapid Methods and Automation in Microfiology and Immunology, 1987, 5
th
ed., p 241-251, Berscia, Brixia Academic Press, 1987 have shown the potential or this technique but note problems with cross reactivity between construct phages and other non-target bacterial types. While such problems may be overcome by engineering more specific phages, see for example U.S. Pat. No. 4,348,478. this entails provision of phages for each type of target bacteria for which a need to test exists. Such recombinants may not readily be constructed for a variety of reasons, not least of which being the need to avoid disruption of the function of the phage itself.
Initially only Salmonella and
E. coli
phages were successfully modified. This is because a great deal of work had been previously done on the molecular biology of these organisms and it was known that the lux genes could fit into the phage head without causing lose of the phage's ability to be infective. This is not the case with other food pathogens and a massive amount of work will need to be done before a comprehensive range of modified phages can be constructed.
A further method utilising the specificity of phages for their host bacteria is disclosed by Hirsh and Martin (1984) Journal of Food Protection, Vol 47, No 5, pp388-390. This method relies on the phage induced destruction of the bacteria grown on enrichment broth to produce lacunae in the bacterial lawns, wherein lacunae are indicative of the presence of the target bacterium; in this case a Salmonella. However the method is lengthy to perform, requiring about 24 hours for a positive result, and in only sensitive to 5 cells/ml or more.
The present inventor has now provided a method based upon the occurrence of release of cell contents on damage, e.g. lysis, of cell walls of bacteria when new phage particles are released at the end of the phage replication cycle. This method provides for the detection of specific bacteria which does not require insertion of the lux gene into the phage genome, whereby specificity is only limited by the availability of phage types suitable for selective attack of the target bacteria to be detected, yet its performance takes far less time than the existing unmodified phage techniques. Thus the method of the present invention has more readily realised potential for the specific and rapid detection of almost any bacteria in any environment; (foodstuffs, drinking water, pharmaceutical products and diseased tissues in humans, animals and plants etc.) provided that a phage with the necessary specificity can be found. Use of the method of the present invention has been shown to be capable of detection or a single Salmonella in a 1 ml sample of milk in under 12 hours.
Thus the present invention provides a method for the detection, identification and/or quantification of target organisms of specific bacterial genus, species or serotype present in a material comprising incubating the material or bacteria derived therefrom with bacteriophage selected for the ability to specifically infect target organisms and release cellular components from them, measuring the amount of one or more particular components released from any bacteria present during the incubation, and relating this to the presence, identity and/or amount of target organisms. Preferably incubation of material with bacteriophage is carried out in bacterial support medium.
Preferred cellular component comprises nucleotides. Theoretically it is possible to measure any or the nucleotides that are released by the cell lysis caused by the release of new phage particles, for example NAD, NADP, NADH, NADPH, ATP or ADP, cAMP or cGMP, with sensitivity provided by use of one or more of the many enzyme based assay systems, e.g. ‘cascade’ systems, that are available in the art. For example, GB 2213261 discloses a method which may be used for assaying reduced pyridine nucleotides, e.g. NADH or NADPH, based upon a salicylate monooxygenase system, while other enzyme systems such as the alkaline phosphatase/NAD/NADP system as disclosed in GB 2240845. Suitable assays for ADP, cAMP, cGMP etc will occur to those skilled in the art.
However, particularly preferred is the measurement of adenosine triphosphate (ATP), that being readily measurable by assay with a variety of enzyme/enzyme substrate combinations by virtue of its being a cofactor in numerous substrate conversions, and being released in relatively large quantities as compared with other bacterial nucleotides. For the rapid and efficient determination of levels of released ATP it is especially preferred to utilise enzyme reactions which result in production or luminescence, most conveniently using luciferase. ATP release is quantifiable with commercially available reagents using bioluminescence wherein it is used to drive oxidation of luciferin under catalysis by luciferase resulting in the emission of light. The quantum efficiency of this reaction is extremely high and the presence and amount of light produced gives a measure of ATP released and thus of the presence and numbers of target organisms.
For identification or quantification of specific bacteria occuring in material in relatively high concentrations, e.g. in cultures of isolated bacteria, it is possible merely to incubate the specific phage with a part of that culture or a subculture in the presence of, or with subsequent addition of, the component assay reagents and thus to measure the amount of component released by performing the assay.
For identification, detection and/or quantification of specific bacteria at lower concentrations, for example as contaminants in or on water or foodstuff materials, it is necessary to first perform an enrichment or bacteria derived from the material under test, e.g. for a few hours, to allow the target bacterium to multiply to a level where its released components, e.g. nucleotides, will be detectable above background levels. Enrichment is preferably carried out by culturing a selective medium, favouring growth of target bacteria, that has been inoculated with the material or a culture derived therefrom, e.g. derived from a swab. Typically enrichment lasts less than a working day, e.g. 1 to 10 hours; preferably 1 to 5 hours.
After enrichment, one or more phage types with known target host specificities are

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods of identifying bacteria of specific bacterial genus,... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods of identifying bacteria of specific bacterial genus,..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods of identifying bacteria of specific bacterial genus,... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3136224

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.