Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving antigen-antibody binding – specific binding protein...
Reexamination Certificate
1999-01-14
2002-02-19
Kunz, Gary L. (Department: 1647)
Chemistry: molecular biology and microbiology
Measuring or testing process involving enzymes or...
Involving antigen-antibody binding, specific binding protein...
C435S007100, C435S007200, C435S007370, C435S069100, C435S071200, C435S071100, C435S252300, C435S252800, C435S325000, C530S350000
Reexamination Certificate
active
06348321
ABSTRACT:
BACKGROUND OF THE INVENTION
Long chain fatty acids (LCFAs) are an important source of energy for most organisms. They also function as blood hormones, regulating key metabolic functions such as hepatic glucose production. Although LCFAs can diffuse through the hydrophobic core of the plasma membrane into cells, this nonspecific transport cannot account for the high affinity and specific transport of LCFAs exhibited by cells such as cardiac muscle, hepatocytes, enterocytes, and adipocytes. The molecular mechanisms of LCFA transport remains largely unknown. Identifying these mechanisms can lead to pharmaceuticals that modulate fatty acid uptake by the intestine and by other organs, thereby alleviating certain medical conditions (e.g. obesity).
SUMMARY OF THE INVENTION
Described herein is a diverse family of fatty acid transport proteins (FATPs) which are evolutionarily conserved; these FATPs are plasma membrane proteins which mediate transport of LCFAs across the membranes and into cells. Members of the FATP family described herein are present in a wide variety of organisms, from mycobacteria to humans, and exhibit very different expression patterns in tissues among the organisms. FATP family members are expressed in prokaryotic and eukaryotic organisms and comprise characteristic amino acid domains or sequences which are highly conserved across family members. In addition, the function of the FATP gene family is conserved throughout evolution, as shown by the fact that the
Caenorhabditis
(
C
).
elegans
and mycobacterial FATPs described herein facilitate LCFA uptake when they are overexpressed in COS cells or
Escherichia
(
E
.)
coli
, respectively. FATPs are expressed in a wide variety of tissues, including all tissues which are important to fatty acid metabolism (uptake and processing).
In specific embodiments, FATPs of the present invention are from such diverse organisms as humans (
Homo
(
H
.)
sapiens
), mice, (Mus (M.) musculus),
F. rubripes, C. elegans, Drosophila
(
D
.)
melanogaster, Saccharomyces
(
S
.)
cerevisiae, Aspergillus nidulans, Cochliobolu heterostrophus, Magnaporthe grisea
and Mycobacterium (M.), such as
M. tuberculosis
. As described herein, four novel mouse FATPs, referred to as mmFATP2, mmFATP3, mmFATP4 and mmFATP5, and six human FATPs, referred to as hsFATP1, hsFATP2, hsFATP3, hsFATP4, hsFATP5 and hsFATP6, have been identified. All four novel murine FATPs (mmFATP2-5) and a previously identified murine FATP (renamed herein FATP1) have orthologs in humans (hsFATP1-5); the sixth human FATP (hsFATP6) does not as yet have a mouse ortholog. The expression patterns of these FATPs vary, as described in detail below.
The present invention relates to FATP family members from prokaryotes and eukaryotes, nucleic acids (DNA, RNA) encoding FATPs, and nucleic acids which are useful as probes or primers (e.g., for use in hybridization methods, amplification methods) for example, in methods of detecting FATP-encoding genes, producing FATPs, and purifying or isolating FATP-encoding DNA or RNA. Also the subject of this invention are antibodies (polyclonal or monoclonal) which bind an FATP or FATPs; methods of identifying additional FATP family members (for example, orthologs of those FATPs described herein by amino acid sequence) and variant alleles of known FATP genes; methods of identifying compounds which bind to an FATP, or modulate or alter (enhance or inhibit) FATP function; compounds which modulate or alter FATP function; methods of modulating or altering (enhancing or inhibiting) FATP function and, thus, LCFA uptake into tissues of a mammal (e.g. human) by administering a compound or molecule (a drug or agent) which increases or reduces FATP activity; and methods of targeting compounds to tissues by administering a complex of the compound to be targeted to tissues and a component which is bound by an FATP present on cells of the tissues to which the compound is to be targeted. For example, a complex of a drug to be delivered to the liver and a component which is bound by an FATP present on liver cells (e.g., FATP5) can be administered.
In one embodiment, the present invention relates to modulating or altering (enhancing or inhibiting/reducing) LCFA uptake in the small intestine and, thus, increasing or reducing the number of calories in the form of fats available to an individual. In another embodiment, the present invention relates to inhibiting or reducing LCFA uptake in the small intestine in order to reduce circulating fatty acid levels; that is, LCFA uptake in the small intestine is reduced and, therefore, circulating (blood) levels are not as high as they otherwise would be. FATP4 has been shown to be expressed in epithelial cells of the small intestine and particularly in the brush border layer of the small intestine. FATP2 has also been shown to be expressed at low levels in epithelial cells of the small intestine, particularly in the duodenum. In contrast, FATP1, FATP3, FATP5 and FATP6 were not detected in any of the intestinal tissues. Thus, also described herein are FATPs which are present in the epithelial cell layer of the small intestine where they mediate LCFA uptake. These FATPs, particularly FATP4 and also FATP2, are targets for methods and drugs which block their function or activity and are useful in treating obesity, diabetes and heart disease. The ability of these FATPs to mediate fat uptake can be modulated or altered (enhanced or inhibited), thus modulating fat uptake in the small intestine. This can be done, for example, by administering to an individual, such as a human or other animal, a drug which blocks interaction of LCFAs with FATP4 and/or FATP2 in the small intestine, thus inhibiting LCFA passage into the cells of the small intestine. As a result, fat absorption is reduced and, although the individual has consumed a certain quantity of fat, the LCFAs are not absorbed to the same extent they would have been in the absence of the compound administered.
Thus, one embodiment of this invention is a method of reducing LCFA uptake (absorption) in the small intestine and, as a result, reducing caloric uptake in the form of fat. A further embodiment is a compound (drug) useful in inhibiting or reducing fat absorption in the small intestine. In another embodiment, the invention is a method of reducing circulating fatty acid levels by administering to an individual a compound which blocks interactions of LCFAs with FATP4 and/or FATP2 in the small intestine, thus inhibiting LCFA passage into cells of the small intestine. As a result, fatty acids pass into the circulatory system at a diminished level and/or rate, and circulating fatty acid levels are lower than they would be in the absence of the compound administered. This method is particularly useful for therapy in individuals who are at risk for or have hyperlipidemia. That is, it can be used to prevent the occurrence of elevated levels of lipids in the blood or to treat an individual in whom blood lipid levels are elevated. Also the subject of this invention is a method of identifying compounds which alter FATP function (and thus, in the case of FATP2 and/or FATP4, alter LCFA uptake in the small intestine).
In another embodiment, the present invention relates to a method of modulating or altering (enhancing or inhibiting) the function of FATP6, which is expressed at high levels in the heart. A method of inhibiting FATP6 function is useful, for example, in individuals with heart disease, such as ischemia, since reducing LCFA uptake into heart muscle in an individual who has ischemic heart disease, which may be manifested by, for example, angina or heart attack, can reduce symptoms or reduce the extent of damage caused by the ischemia. In this embodiment, a drug which inhibits FATP6 function is administered to an individual who has had or is having a heart attack, to reduce LCFA uptake by the individual's heart and, as a result, reduce the damage caused by ischemia. In a further embodiment, this invention is a method of targeting a compound, such as a therapeutic drug or an i
Gimeno Ruth E.
Hirsch David J.
Lodish Harvey F.
Stahl Andreas
Tartaglia Louis A.
Hamilton Brook Smith & Reynolds P.C.
Hamud Fozia
Kunz Gary L.
Whitehead Institute for Biomedical Research
LandOfFree
Methods of identifying agents inhibiting fatty acid... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Methods of identifying agents inhibiting fatty acid..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods of identifying agents inhibiting fatty acid... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2959937