Methods of genetic analysis using nucleic acid arrays

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C422S068100, C536S023100, C536S024300, C536S024310

Reexamination Certificate

active

06821724

ABSTRACT:

REFERENCE TO SEQUENCE LISTING
The sequence listing, including SEQ ID NOS: 1-127811, is contained on compact disc in two copies, labeled Copy 1 and Copy 2. The computer readable form is on a compact disc labeled CRF. The file name on each of the three compact discs is seqlist.rtf, created Jul. 12, 2002. Each file is approximately 16.3 kilobytes. The sequence listing information recorded in the computer readable form is identical to the written compact disc sequence listing. The sequence listing is hereby incorporated in this application in its entirety and is to be considered part of the disclosure of this specification.
BACKGROUND OF THE INVENTION
The present invention provides a unique pool of nucleic acid sequences useful for analyzing molecular interactions of biological interest. The invention therefore relates to diverse fields impacted by the nature of molecular interaction, including chemistry, biology, medicine, and medical diagnostics.
FIELD OF THE INVENTION
Many biological functions are carried out by regulating the expression levels of various genes, either through changes in levels of transcription (e.g. through control of initiation, provision of RNA precursors, RNA processing, etc.) of particular genes, through changes in the copy number of the genetic DNA, or through changes in protein synthesis. For example, control of the cell cycle and cell differentiation, as well as diseases, are characterized by the variations in the transcription levels of a group of genes.
Gene expression is not only responsible for physiological functions, but also associated with pathogenesis. For example, the lack of sufficient functional tumor suppressor genes and/or the over expression of oncogene/protooncogenes leads to tumorgenesis. (See. e.g., Marshall, Cell, 64: 313-326 (1991) and Weinberg, Science, 254: 1138-1146 (1991.)) Thus, changes in the expression levels of particular genes (e.g. oncogenes or tumor suppressors), serve as signposts for the presence and progression of various diseases.
As a consequence, novel techniques and apparatus are needed to study gene expression in specific biological systems.
All documents, i.e., publications and patent applications, cited in this disclosure, including the foregoing, are incorporated by reference herein in their entireties for all purposes to the same extent as if each of the individual documents were specifically and individually indicated to be so incorporated by reference herein in its entirety.
SUMMARY OF THE INVENTION
The invention provides nucleic acid sequences which are complementary to particular genes and makes them available for a variety of analyses, including, for example, gene expression analysis. For example, in one embodiment the invention comprises an array comprising of any 10 or more, 100 or more, 1000, or more, 10,000 or more or 100,000 or more nucleic acid probes containing 9 or more consecutive nucleotides from the sequences listed in SEQ ID NOS: 1-127811, or the perfect match, perfect mismatch, antisense match or antisense mismatch thereof. In a further embodiment, the invention comprises the use of any of the above arrays or fragments disclosed in SEQ ID NOS: 1-127811 to: monitor gene expression levels by hybridization of the array to a DNA library; monitor gene expression levels by hybridization to an mRNA protein fusion compound; identify polymorphisms; identify biallelic markers; produce genetic maps; analyze genetic variation; comparatively analyze gene expression between different species; analyze gene knockouts; or, to hybridize tag-labeled compounds. In a further embodiment the invention comprises a method of analysis comprising of hybridizing one or more pools of nucleic acids to two or more of the fragments disclosed in TABLE 1 and detecting said hybridization. In a further embodiment the invention comprises the use of any one or more of the fragments disclosed in SEQ ID NOS: 1-127811 as a primer for PCR. In a further embodiment the invention comprises the use of any one or more of the fragments disclosed in SEQ ID NOS: 1-127811 as a ligand.
DETAILED DESCRIPTION OF THE INVENTION
1. Definitions
Massive Parallel Screening: The phrase “massively parallel screening” refers to the simultaneous screening of at least about 100, preferably about 1000, more preferably about 10,000 and more preferably about 100,000 different nucleic acid hybridizations.
Nucleic Acid: The terms “nucleic acid” or “nucleic acid molecule” refer to a deoxyribonucleotide or ribonucleotide polymer in either single-or double-stranded form, and unless otherwise limited, would encompass analogs of natural nucleotides that can function in a similar manner as naturally occurring nucleotides. Nucleic acids may be derived from a variety or sources including, but not limited to, naturally occurring nucleic acids, clones, synthesis in solution or solid phase synthesis.
Probe: As used herein a “probe” is defined as a nucleic acid capable of binding to a target nucleic acid of complementary sequence through one or more types of chemical bonds, usually through complementary base pairing, usually through hydrogen bond formation. As used herein, a probe may include natural (i.e. A, G, U, C, or T) or modified bases (7-deazaguanosine, inosine, etc.). In addition, the bases in probes may be joined by a linkage other than a phosphodiester bond, so long as it does not interfere with hybridization. Thus. probes may be peptide nucleic acids in which the constituent bases are joined by peptide bonds rather than phosphodiester linkages.
Target nucleic acid: The term “target nucleic acid” or “target sequence” refers to a nucleic acid or nucleic acid sequence which is to be analyzed. A target can be a nucleic acid to which a probe will hybridize. The probe may or may not be specifically designed to hybridize to the target. It is either the presence or absence of the target nucleic acid that is to be detected, or the amount of the target nucleic acid that is to be quantified. The term target nucleic acid may refer to the specific subsequence of a larger nucleic acid to which the probe is directed or to the overall sequence (e.g., gene or mRNA) whose expression level it is desired to detect. The difference in usage will be apparent from context.
mRNA or transcript: The term “mRNA” refers to transcripts of a gene. Transcripts are RNA including, for example, mature messenger RNA ready for translation, products of various stages of transcript processing. Transcript processing may include splicing, editing and degradation.
Subsequence: “Subsequence” refers to a sequence of nucleic acids that comprise a part of a longer sequence of nucleic acids.
Perfect match: The term “match,” “perfect match,” “perfect match probe” or “perfect match control” refers to a nucleic acid that has a sequence that is perfectly complementary to a particular target sequence. The nucleic acid is typically perfectly complementary to a portion (subsequence) of the target sequence. A perfect match (PM) probe can be a “test probe”, a “normalization control” probe, an expression level control probe and the like. A perfect match control or perfect match is, however, distinguished from a “mismatch” or “mismatch probe.” Mismatch: The term “mismatch,” “mismatch control” or “mismatch probe” refers to a nucleic acid whose sequence is deliberately selected not to be perfectly complementary to a particular target sequence. As a non-limiting example, for each mismatch (MM) control in a high-density probe array there typically exists a corresponding perfect match (PM) probe that is perfectly complementary to the same particular target sequence. The mismatch may comprise one or more bases. While the mismatch(es) may be located anywhere in the mismatch probe, terminal mismatches are less desirable because a terminal mismatch is less likely to prevent hybridization of the target sequence. In a particularly preferred embodiment, the mismatch is located at or near the center of the probe such that the mismatch is most likely to destabilize the duplex with the target sequence under the test hybridization cond

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods of genetic analysis using nucleic acid arrays does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods of genetic analysis using nucleic acid arrays, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods of genetic analysis using nucleic acid arrays will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3341724

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.