Methods of fabricating a catheter shaft having one or more...

Adhesive bonding and miscellaneous chemical manufacture – Methods – Surface bonding and/or assembly therefor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C156S211000, C156S257000, C156S272800, C156S294000, C604S102010, C604S523000, C604S527000, C606S194000

Reexamination Certificate

active

06409863

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to catheters for performing medical procedures. More particularly, the present invention relates to methods of fabricating catheter shafts having one or more guidewire ports and two or more tubular members.
BACKGROUND OF THE INVENTION
Intravascular catheters are currently utilized in a wide variety of minimally-invasive medical procedures. Generally, an intravascular catheter enables a physician to remotely perform a medical procedure by inserting the catheter into the vascular system of the patient at a location that is easily accessible and thereafter navigating the catheter to the desired target site. By this method, virtually any target site in the patient's vascular system may be remotely accessed, including the coronary, cerebral, and peripheral vasculature.
Typically, the catheter enters the patient's vasculature at a convenient location such as a blood vessel in the neck or near the groin. Once the distal portion of the catheter has entered the patient's vascular system the physician may urge the distal tip forward by applying longitudinal forces to the proximal portion of the catheter. For the catheter to effectively communicate these longitudinal forces it is desirable that the catheter have a high level of pushability and kink resistance.
Frequently the path taken by a catheter through the vascular system is tortuous, requiring the catheter to change direction frequently. In some cases, it may even be necessary for the catheter to double back on itself. In order for the catheter to conform to a patient's tortuous vascular system, it is desirable that intravascular catheters be very flexible, particularly in the distal portion.
While advancing the catheter through the tortuous path of the patients vasculature, physicians often apply torsional forces to the proximal portion of the catheter to aid in steering the catheter. To facilitate the steering process, the distal portion of the catheter may include a plurality of bends or curves. Torsional forces applied on the proximal end must translate to the distal end to aid in steering. It is therefore desirable that an intravascular catheter have a relatively high level of torquability to facilitate steering.
After the intravascular catheter has been navigated through the patient's vascular system so that its distal end is adjacent the target site, the catheter may be used for various diagnostic and/or therapeutic purposes. One example of a diagnostic use for an intravascular catheter is the delivery of radiopaque contrast solution to enhance fluoroscopic visualization. In this application, the intravascular catheter provides a fluid path leading from a location outside the body to a desired location inside the body of a patient. In order to maintain a fluid path, it is desirable that the intravascular catheter be sufficiently resistant to kinking. In addition, because such fluids are delivered under pressure, it is desirable that the intravascular catheter be sufficiently resistant to bursting or leaking.
Examples of therapeutic purposes for intravascular catheters include percutaneous transluminal angioplasty (PTA) and percutaneous transluminal coronary angioplasty (PTCA). These angioplasty techniques typically involve the use of a guide catheter and a balloon catheter. During these procedures, the distal end of the guide catheter is typically inserted into the femoral artery located near the groin of the patient. The guide catheter is urged through the vasculature of the patient until its distal end is proximate the restriction. In many cases, the distal end of the guide catheter is positioned in the ostium of the coronary artery. The balloon catheter may then be fed through a lumen in the guide catheter such that the balloon is positioned proximate a restriction in a diseased vessel. The balloon is then inflated and the restriction in the vessel is opened. In this application, it is desirable that the guide catheter provide a low friction path for the balloon catheter. The balloon is inflated by urging a liquid though the elongate shaft of the balloon catheter and into the balloon. In this application, the balloon catheter must provide an unobstructed path for the inflation fluid. It is also desirable that the catheter be substantially free of leaks.
As described at length above, it is desirable to combine a number of performance features in an intravascular catheter. It is desirable that the catheter have a relatively high level of pushability and torqueability. It is also desirable that a catheter be relatively flexible, particularly near it's distal end. The need for this combination of performance features is often addressed by building a catheter which has two or more discrete tubular members having different performance characteristics. For example, a relatively flexible distal section may be spliced to a relatively rigid proximal section. When a catheter is formed from two or more discrete tubular members, it is necessary to form a bond between the distal end of one tubular member and the proximal end of another tubular member.
Intravascular catheters are often used in conjunction with a guidewire. When this is the case, the guidewire may be advanced through the patient's vasculature until its distal tip has reached a desired target location. Once the distal portion of the guidewire has reached the desired location, a catheter may be threaded onto the guidewire and urged distally until the distal end of the catheter is proximate the target location.
Intravascular catheters adapted for use with guidewire typically fall into one of two categories: 1) single operator exchange (SOE); or 2) over-the-wire types. An over-the-wire type of catheter includes a guidewire lumen extending from the distal tip of the catheter to the proximal end of the catheter. Whereas, a single operator exchange catheter typically includes a relatively short guidewire lumen proximate the distal end of the catheter.
Single operator exchange catheters were developed in response to difficulties encountered when exchanging over-the-wire catheters. During a medical procedure utilizing intravascular catheters it is sometimes necessary to withdraw one catheter and replace it with a second catheter. Generally the catheter is withdrawn from the patient over the guidewire leaving the guidewire in place with the distal tip of the guidewire proximate the target location of the patient's anatomy.
In order to withdraw the catheter while leaving the guidewire in the desired location, a portion of the guidewire is typically grasped by the physician in order to hold the guidewire in place. During this procedure, a portion of the guidewire must be exposed at all times so that it is available for the physician to grasp. In the case of over-the-wire catheter, this requires that the length of guidewire extending beyond the patient's body be longer than the catheter. In some cases, length may be added to the guidewire using a guidewire extension. The long exchange wire or guidewire extension extending beyond the patient's body must be managed during the catheter exchange procedure. In particular, contamination must be avoided by making sure that the guidewire is not dropped from the sterile field. This procedure is awkward and typically requires two persons.
An SOE catheter, on the other hand, has a relatively short guidewire lumen. The length of guidewire extending from the patient need only be slightly longer than the guidewire lumen of the catheter. The physician may anchor or hold the guidewire as the catheter is removed from the body with the exchange occurring over the shorter guidewire lumen. The guidewire lumen of an SOE catheter typically includes a distal guidewire port disposed at the distal tip of the catheter and a proximal guidewire port disposed proximally of the distal end of the catheter. It is desirable to fabricate SOE catheters including a proximal guidewire port while maintaining the other desirable performance features described

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods of fabricating a catheter shaft having one or more... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods of fabricating a catheter shaft having one or more..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods of fabricating a catheter shaft having one or more... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2977924

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.