Methods of enhancing antigen-specific T cell responses

Drug – bio-affecting and body treating compositions – Antigen – epitope – or other immunospecific immunoeffector – Recombinant virus encoding one or more heterologous proteins...

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

424 932, 4242781, 4353201, 514 44, A61K 3900, A61K 4505, A61K 4800, C12N 1586

Patent

active

057388520

DESCRIPTION:

BRIEF SUMMARY
FIELD OF THE INVENTION

This invention relates to methods of preventing new infections, curing current infections and treating chronic infections caused by intracellular infectious agents. The methods encompass using gene therapy to enhance the interaction between ligands that costimulate T cell activation. More specifically, this invention relates to materials and methods of gene therapy in which genes encoding an antigen from an infectious agent and ligands that costimulate T cell activation are co-expressed in the cells of the host animal to prevent or treat chronic infection. This method stimulates or enhances immune responses To antigens of infectious agents by enhancing the antigen-specific T cell response thus providing protection against new infection or terminating chronic infection.


BACKGROUND OF THE INVENTION

Many infectious agents are capable of causing infection and disease in a host organism; examples of such infectious agents include protozoa, fungi, bacteria, viruses and even worms. Of these infectious agents, those with the mechanism to act intracellularly pose the most significant challenge for prevention and treatment. This is particularly true where the host of the intracellular infectious agent is a mammal, such as man.
Mammals have a complex immune system which has several different mechanisms for defending against an invasion by an infectious agent. Under normal circumstances, the immune system functions to ultimately eliminate the infectious agent from the mammalian host's system. Most infections are self-limiting because the mammalian immune system is generally able to eliminate the infectious agents. Problems arise, however, when the immune system is unable to, or does not, respond to the presence of an infectious agent. In this scenario, infections can become chronic and can persist for many years or even the life-time of the infected human or animal, often resulting in serious disease.
Traditional, standard vaccines expose the immune system to a foreign antigen such as those of infectious agents to elicit an antigen-specific immune response. The immune response is most often humoral and not cellular, that is, it results in production of antibodies but not T cell-based immunity as discussed below. Effective vaccination prevents infection or modifies diseases resulting from infection caused by the infectious agent to which the vaccine is directed.
Immune responses that elicit neutralizing antibodies are sufficient for preventing infections with certain viruses. Murphy et al. (1990). Thus, infection by these viruses can be prevented by vaccination with antigens that elicit neutralizing antibodies. For some viruses and non-virus infectious agents, however, neutralizing antibodies either cannot be elicited or, if elicited, are insufficient to prevent infection and/or disease progression.
Two traditional vaccine types are killed viruses and live attenuated viruses. Killed viruses consist of either whole virions or other infectious agents the infectivity of which has been inactivated. These vaccines may also consist of antigenic subunits or component parts of virions or other infectious agents. These vaccines are administered by parenteral inoculation or exposure to mucous membranes. Live attenuated vaccines consist of live virus or other infectious agents with genetically altered virulence. When used for vaccination, these vaccines cause a reduced form of the disease, or no disease at all.
A third vaccine approach has been investigated and used experimentally but is not yet in clinical use. This approach is the utilization of live agents such as viruses or bacteria as vectors to express vaccine antigens of heterologous infectious agents. A gene or nucleotide sequence encoding the antigen is expressed by the vector and when used in vaccination, exposes the host to the antigen. An immune response to the antigen is expected to protect the host from the infectious agent from which the antigen was derived.
Examples of killed vaccines include tetanus toxoid, influenza virus subunit, rabi

REFERENCES:
Boussiotis et al., 1993, "Activated Human Lumphocytes Express Three CTLA-4 Counterreceptors that Costimulate T-Cell Activation" Proc. Natl. Acad. Sci. U.S.A. 90:11059-11063.
Carter, Barrie J., 1992, "Adeno-associated Virus Vectors," Current Opinion in Biotechnology 3:533-539.
Cayeux et al., 1995, "Tumor Cell Vaccines Using Cells Contransfected with Cytokine," 2(Supp1).S19.
Chaux et al., 1996, "T-Cell Co-Stimulation by the CD28 Ligand B7 is Involved in the Immune Response Leading to Rejection of a Spontaneously Regressive Tumor," Int. J. Cancer 66:244-248.
Chen et al., 1994, "B7-1/CD80-Transduced Tumor Cells Elicit Better Systemic Immunity than Wild-Type Tumor Cells Admixed with Corynebacterium Parvum," Cancer Research 54:5420-5423.
Chen et al., 1992, "Costimulation of Antitumor Immunity by the B7 Counterreceptor for the T Lymphocyte Molecules CD28 and CTLA-4," Cell 71:1093-1102.
Chong et al., 1994, "The Use of Combination Gene Therapies for the Treatment of Cancer," Br. J. Cancer 71Supp24:13.
Choo et al., 1992, "Indentification of the Major, Parenteral Non-A, Non-B Hepatitis Agent (Hepatitis Agent (Hepatitis C Virus) Using a Recombinant cDNA Approach" Seminars in Liver Disease 12:279-288.
Coughlin et al., 1995, "B7-1 and Interleukin 12 Synergistically Induce Effective Antitumor Immunity.sup.1," Cancer Research 55:4980-4987.
DeBenedette et al., 1995, "Role of 4-1BB Ligand in Costimulation of T Lymphocyte Growth and its Upregulation on M12 B Lymohomas by cAMP," J. Exp. Med. 181:985-992.
Dohring et al., 1994, "T-Helper-and Accessory-Cell-Independent Cytotoxic Responses to Human Tumor Cells Transfected with a B7 Retroviral Vector," Int. J. Cancer 57:754-759.
Eisenberg et al., 1986, "Preliminary Trial of Recombinant Fibroblast Interferon in Chronic Hepatitis B Virus Infection," Antimicrobial Agents and Chemotherapy 29:122-126.
Freeman et al., 1989, "B7, a New Member of the Ig Superfamily with Unique Expression on Activated and Neoplastic B Cells," J. Immunol. 143:2714-2722.
Freeman et al., 1991, "Structure, Expression, and T cell Costimulatory Activity of the Murine Homologue of the Human B Lymphocyte Activation Antigen B7" J. Exp. Med. 174:625-631.
Fujii,Hideki et al., 1996, "Vaccination of Tumor Cells Transfected with the B7-1 (CD80) Gene Induces the Anti-Metastatic Effect and Tumor Immunity in Mice," Int. J. Cancer 66:219-224.
Galvin et al., 1992, "Murine B7 Antigen Provides a Sufficient Costimulatory Signal for Antigen-Specific and MHC-Restricted T Cell Activation," J. Immunol. 149:3802-3808.
Garcia et al., 1985, "Preliminary Observation of Hepatitis-B Associated Membranous Glomerulonephritis Treated with Leukocyte Interferon," Hepatology 5:317-320.
Garcia et al., 1987, "Adenine Arabinoside Monophosphate in Combination with Human Leukocyte Interferon in the Treatment of Chronic Hepatitis," Int. Med. 107:278-285.
Gimmi et al., 1991, "B Cell Surface Antigen B7 Provides a Costimulatory Signal that Induces T Cells to Proliferate and Secrete Interleukin," Proc. Natl. Acad. Sci. U.S.A. 88:6575-6579.
Greenberg et al., 1976, "The Effect of Human Leukocyte Interferon on Hepatitis B Virus Infection in Patients with Chronic Active Hepatitis," New Engl. J. Med. 295:517-522.
Guilhot et al., 1992, "Hepatitis B Virus (HBV)-Specific Cytotoxic T-Cell Response in Humans: Production of Target Cells by Stable Expression of HBV-Encoded Proteins in Immortalized Human B-Cell Lines," J. Virol. 66:2670-2678.
Guinan et al., 1994, "Pivotal Role of the By:CD28 Pathway in Transplantation Tolerance and Tumor Immunity," Blood 84(1):3261-3282.
Hafkin et al., 1979, "Effects of Interferon and Adenine Arabinoside Treatment of Hepatitis B Virus Infection on Cellular Immune Responses.," Antimicrobial Agents and Chemotherapy 16:781-787.
He et al., 1996, "Costimulatory Protein B7-1 Enhances the Cytotoxic T Cell Response and Antibody Response to Hepatitis B Surface Antigen," Proc. Natl. Acad. Sci. U.S.A. 93:7274-7278.
Hinuma et al., 1991, "A Novel Strategy for Converting Recombinant V

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods of enhancing antigen-specific T cell responses does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods of enhancing antigen-specific T cell responses, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods of enhancing antigen-specific T cell responses will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-632647

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.