Methods of commercial production and extraction of protein...

Multicellular living organisms and unmodified parts thereof and – Method of introducing a polynucleotide molecule into or... – Nonplant protein is expressed from the polynucleotide

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C800S287000, C800S278000, C800S298000, C800S320000, C435S468000, C435S419000, C435S069100, C435S183000, C435S185000, C530S412000, C530S427000

Reexamination Certificate

active

06504085

ABSTRACT:

BACKGROUND OF THE INVENTION
For decades, many proteins useful to humans or animals have been isolated from plants. With the advent of genetic engineering technology, a plant could be modified to produce human, animal, viral, bacterial, or fungal proteins. Transgenic plants offer the potential to be one of the most economical systems for large-scale production of proteins for industrial, pharmaceutical, veterinary and agricultural use. Advantages of plant systems include the low cost of growing a large biomass, easy scale-up (increase of planted acreage), natural storage organs (tubers, seeds), and established practices for efficient harvesting, transporting, storing, and processing of the plant. Recombinant proteins can be targeted to seeds allowing stable storage of the recombinant proteins for extended periods. Plants offer advantages over other production systems since some proteins may be used without extensive purification, because for many applications, plant material is used directly as a food source or feed stock.
Examples abound for expression of foreign genes in plants [1, 2]
1
In general, the expression of these foreign genes has been aimed at benefiting the consumer through plant improvement by: a) expressing antifungal compounds or growth factors; b) improving agronomic traits such as fruit ripening or nutritional contents or c) inducing sterility in the context of creating hybrid plants. It is also feasible to express in plants heterologous genes that encode high value products, a technology currently being explored by several plant biotechnology companies and university laboratories. In many cases, expression in plants could be the system of choice because of such inherent advantages as cost relative to that of animal tissue culture, and the concern that prokaryotic or yeast expression systems may not be capable of correct glycosylation and other post-translational processing steps required for proper function of the expressed protein [3]. Thus, there is a need to improve such systems for increased efficiency of expression of the protein and to lower production costs.
1
References are listed at the end of the Detail Description of the Specific Embodiments.
Among representative efforts to achieve such goals is the Goodman et al patent assigned to Calgene, U.S. Pat. No. 5,550,038, which discloses constructs for expression of physiologically active mammalian proteins in plant cells. The isolation and purification procedure for the mammalian peptides disclosed there is to preparation from frozen tobacco tissue obtained from tissue culture which is ground in liquid nitrogen, centrifuged, washed with ethylene glycol and dialyzed overnight in dialysis buffer to obtain &ggr;-IFN.
Vanderkerckhove et al, assigned to Plant Genetic Systems N.V, at U.S. Pat. No. 5,487,991, discloses a method for producing polypeptides by cultivating a plant whose genome contains recombinant DNA. Recovery of transgenic proteins is accomplished by harvesting seeds from cultivated plants, cleaving out the peptide of interest and recovering the peptide of interest in a purified form. The recovery of the active polypeptides involves homogenizing the entire seed in dry ice and extraction with hexane, extraction with high salt buffer and dialysis against distilled water and precipitating the contaminating globulins. Further purification is accomplished by gel-filtration chromatography, and finally ion-exchange chromatography.
The extraction process shown at PCT W092/010402 by Willmitzer et al and assigned to Novo Nordisk provides for homogenizing plant tissue and use of extraction buffer, filtration and centrifugation.
In PCT W095/14099 by Rodriguez et al, assigned to the University of California, methods for production and secretion of heterologous proteins in plants are discussed wherein malting monocot plant seeds is disclosed to stimulate heterologus protein production in cereal seeds, causing conversion of the endosperm to maltose and germination of the seeds. The chimeric gene includes a transcriptional regulatory region inducible during seed germination, a DNA sequence encoding a protein of interest and further contains a signal sequence linked to the transcriptional regulatory region effective to facilitate secretion of the protein across the aleurone or scutellar epithelium layer into the endosperm. In one embodiment, the embryos and endosperm may be separately steeped in 55° F. water for 48 hours followed by four day germination in bins or drums with inducement of a promoter or addition of plant hormones. This is because expression in the embryo was poor unless different conditions were used to cause induction of the protein in the embryo versus the endosperm. The embryo and endosperm portions are then mixed and mashed.
Factors that can be manipulated to control levels of expression are the presence of transcriptional modification factors such as introns, polyadenylation signals and transcription termination sites. Intron sequences within the gene of interest also may increase its expression level by stabilizing the transcript and allowing its effective translation. Many plant genes contain intron sequences exhibiting this positive impact on expression [4] including for example some of the plant ubiquitin genes [5,6] and the Adh2 gene [4]. At the translational level, factors to consider that affect expression level of foreign genes are the ribosomal binding site and the codon bias of the gene [7, and references therein]. High level expression of a gene product which accumulates in the cytoplasm may result in toxicity to the plant cell. Therefore, sequestering the protein into a compartment (organelle) or transporting it to the extracellular matrix may allow higher expression levels. Efforts are being made to understand plant protein targeting [8,9] and proteins can be effectively targeted to the mitochondrian, the chloroplast, the vacuole, peroxisomes or the cell wall. The specific choice of where to target will depend on the nature of the protein of interest and the specific need. Insertion of a construct at different loci within the genome has been observed to cause variation in the level of gene expression in plants. The effect is believed to be due at least in part to the position of the gene on the chromosome, producing individual isolates with different expression levels[10].
One of the critical factors in expression of protein in plants is the choice of transcriptional promoters used. Recently, the range of available plant compatible promoters has increased to include tissue-specific and inducible promoters. Some of the better documented constitutive promoters include the CaMV 35s promoter and its tandem arrangement, as described in European patent application number 0 342 926, and the ubiquitin promoter, as disclosed in Quail et al, assigned to Mycogen Plant Science, Inc. U.S. Pat. No. 30 5,510,474.
The invention here improves on what has been known through the determination that the germ can be separated from the endosperm, not for enriching the endosperm fractions, but to be used separately for recovery of protein and high activity obtained. This provides for considerable cost savings, as the separated endosperm and other part of the seed can be sold for food and feed, and the much smaller germ material as opposed to the entire seed, is processed, producing more protein per material processed.
Further, expression of protein can be directed to the germ, further enhancing protein recovery. A surprising finding is that the ubiquitin promoter, believed to have been constitutively expressed, greatly increases expression of protein in the germ.
Thus it is an object of the invention to decrease cost in production of commercial protein through using seed expressing the protein.
An object of the invention is to use seed for production of commercial protein more efficiently.
It is another object of the invention to use the germ portion of the seed for production of commercial protein while retaining high a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods of commercial production and extraction of protein... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods of commercial production and extraction of protein..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods of commercial production and extraction of protein... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3016519

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.