Methods for treating the vasculature of solid tumors

Drug – bio-affecting and body treating compositions – Radionuclide or intended radionuclide containing; adjuvant... – Attached to antibody or antibody fragment or immunoglobulin;...

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

4241781, 4241561, 4241831, 4241421, 4241551, 4241811, 5303917, 5303919, 5303871, 53038815, 53038822, 5303888, 5303913, A61K 5110, A61K 39395, C07K 1600

Patent

active

058558667

ABSTRACT:
The present invention relates generally to methods and compositions for targeting the vasculature of solid tumors using immunologically-based reagents. In particular aspects, antibodies carrying diagnostic or therapeutic agents are targeted to the vasculature of solid tumor masses through recognition of tumor vasculature-associated antigens, such as, for example, through endoglin binding, or through the specific induction of endothelial cell surface antigens on vascular endothelial cells in solid tumors.

REFERENCES:
patent: 4456550 (1984-06-01), Dvorak et al.
patent: 4472509 (1984-09-01), Gansow et al.
patent: 4536387 (1985-08-01), Sakamoto et al.
patent: 5021236 (1991-06-01), Gries et al.
patent: 5081034 (1992-01-01), Bevilacqua et al.
patent: 5342757 (1994-08-01), Garin-Chesa et al.
patent: 5399346 (1995-03-01), Anderson et al.
patent: 5403713 (1995-04-01), Bevilacqua et al.
patent: 5632991 (1997-05-01), Gimbrone, Jr.
patent: 5659013 (1997-08-01), Senger et al.
Burrows et al., "A Murine Model for Antibody-Directed Targeting of Vascular Endothelial Cells in Solid Tumors," Cancer Research, 52:5954-5962, Nov. 1992.
Burrows and Thorpe, "Targeting the Vasculature of Solid Tumors," Journal of Controlled Release, 28:195-202, Jan. 1994.
Clauss et al., "A Polypeptide Factor Produced by Fibrosarcoma Cells That Induces Endothelial Tissue Factor and Enhances the Procoagulant Response to Tumor Necrosis Factor/Cachetin," The Journal of Biological Chemistry, 265(12):7078-7083, Apr. 1990.
Thorpe and Burrows, "Antibody-Directed Targeting of the Vasculature of Solid Tumors," Breast Cancer Research and Treatment, 36(2):237-251, 1995.
Yamazaki et al., "Bispecific Monoclonal Antibodies with Specificities for Activated Platelets and Thrombolytic Agents, Their Production and Use," Abstract for Canadian Patent Application CA 2039259; Chem Abstracts, 117(11), Abstract #109988, 1995.
Buring et al., "Endoglin is expressed on a subpopulation of immature erythroid cells of normal human bone marrow," Leukemia, 5(10):841-847, 1991.
Dvorak et al., "Structure of Solid Tumors and Their Vasculature: Implications for Therapy with Monoclonal Antibodies," Cancer Cells, 3(3):77-85, 1991.
Gougos & Letarte, "Primary Structure of Endoglin, an RGD-containing Glycoprotein of Human Endothelial Cells," The Journal of Biological Chemistry, 265(15):8361-8364, 1990.
Introduction to Immunology, Kimball, pp. 64-68, 1990.
Osband and Ross, "Problems in the Investigational Study and Clinical Use of Cancer Immunotherapy," Immunotherapy, 11:193-195, 1990.
Chatterjee, et al., Idiotypic antibody immunotherapy of cancer, Cancer Immunol. Immunotherapy, 38:75-82, 1994.
Burrows et al., "Influence of Tumor-derived Interleukin 1 on Melanoma-Endothelial Cell Interactions in Vitro," Cancer Research, 51:4768-4775, Sep. 15, 1991.
European Application Serial No. 93 906 289.9 Office Action dated Sep. 25, 1997.
Wellicome et al., A Monoclonal Antibody That Detects A Novel Antigen on Endothelial Cells That Is Induced By Tumor Necrosis Factor, IL-1, or Lipopolysaccharide, J. Immunol., 144(7):2558-2565, Apr. 1, 1990.
Aoyagi, "Distribution of Plasma Fibronectin in the Metastatic Lesion of Cancer: Experimental Study by Autoradiography," Thrombosis Research, 49:265-75, 1988.
Balza et al., "Production and Characterization of Monoclonal Antibodies Specific for Different Epitopes of Human Tenascin," FEBS 332(1,2):39-43, 1993.
Bjorndahl, et al., "Human T Cell Activation: Differential Response to Anti-CD28 As Compared to Anti-CD3 Monoclonal Antibodies," Eur. J. Immunol., 19:881-87, 1989.
Blanchard, et al., "Infiltration of Interleukin-2-Inducible Killer Cells in Ascitic Fluid and Pleural Effusions of Advanced Cancer Patients," Cancer Research, 48:6321-27, 1988.
Bohlen, et al., "Cytolysis of Leukemic B-Cells by T-Cells Activated via Two Bispecific Antibodies," Cancer Research, 53:4310-14, 1993.
Borsi, et al., "Expression of Different Tenascin Isoforms in Normal, Hyperplastic and Neoplastic Human Breast Tissues," Int. J. Cancer, 52:688-92, 1992.
Boyer, et al., "Differential Induction by Interferons of Major Histocompatibility Complex-Encoded and Non-Major Histocompatibility Complex-Encoded Antigens in Human Breast and Ovarian Carcinoma Cell Lines," Cancer Research, 49:2928-34, 1989.
Burton-Wurster, et al., "Expression of the Ed B Fibronectin Isoform in Adult Human Articular Cartilage," Biochemical and Biophysical Research Communication 165(2): 782-87, 1989.
Collins, et al., "Immune Interferon Activates Multiple Class II Major Histocompatibility Complex Genes and the Associated Invariant Chain Gene in Human Endothelial Cells and Dermal Fibroblasts," Proc. Natl. Acad. Sci. USA, 81:4917-21, 1984.
Carnemolla et al., "A Tumor-associated Fibronectin Isoform Generated by Alternative Splicing of Messenger RNA Precursors," The Journal of Cell Biology, 108:1139-48, 1989.
Carnemolla et al., "The Inclusion of the Type III Repeat ED-B in the Fibronectin Molecule Generates Conformational Modifications that Unmask a Cryptic Sequence," The Journal of Biological Chemistry, 267(34):24589:92, 1992.
Carnemolla, et al., "Phage Antibodies with Pan-Species Recognition of the Oncofoetal Angiogenesis Marker Fibronectin ED-B Domain," Int. J. Cancer 68:397-405, 1996.
Castellani, et al., "The Fibronectin Isoform Containing the ED-B Oncofoetal Domain: A Marker of Angiogenesis," Int. J. Cancer, 59:612-18, 1994.
Conforti, et al., "Human Endothelial Cells Express Integrin Receptors on the Luminal Aspect of Their Membrane," Blood 80(2):437-46, 1992.
Dillman, "Monoclonal Antibodies for Treating Cancer," Annals of Internal Medicine, 111(7) 592-600, 1989.
Farnoud, et al., "Fibronectin Isoforms Are Differentially Expressed in Normal and Adenomatous Human Anterior Pituitaries," Int. J. Cancer, 61:27-34, 1995.
Garin-Chesa, et al., "Cell Surface Glycoprotein of Reactive Stromal Fibroblasts As A Potential Antibody Target in Human Epithelial Cancers," Proc. Natl. Acad. Sci. USA, 87:7235-39, 1990.
Groenewegen, et al., "Lymphokine Dependence of In Vivo Expression of MHC Class II Antigens by Endothelium," Nature, 316:361-63, 1985.
Harris and Emery, "Therapeutic Antibodies--The Coming of Age," Btech, 11:42-44, 1993.
June, et al., "T-Cell Proliferation Involving the CD28 Pathway Is Associated with Cyclosporine-Resistant Interleukin 2 Gene Expression," Molecular and Cellular Biology 7(12):4473-81, 1987.
Kaczmarek, et al., "Distribution of Oncofetal Fibronectin Isoforms in Normal Hyperplastic and Neoplastic Human Breast Tissues," Int. J. Cancer, 58:11-16, 1994.
Koulova et al., "The CD28 Ligand B7/BB1 Provides Costimulatory Signal for Alloactivation of CD4.sup.+ T Cells," J. Exp. Med. 173:759-62, 1991.
Kurosawa, et al., "Early Appearance and Activation of Natural Killer Cells in Tumor-Infiltrating Lymphoid Cells During Tumor Development," Eur. J. Immunol. 23:1029-33, 1993.
Lampugnani, et al., "The Role of Integrins in the Maintenance of Endothelial Monolayer Integrity," The Journal of Cell Biology, 112(3):479-90, 1991.
Linnala, et al., "Human Amnion Epithelial Cells Assemble Tenascins and Three Fibronectin Isoforms in the Extracellular Matrix," FEBS, 314(1,2):74-78, 1993.
Maeda, et al., "Production and Characterization of Tumor Infiltrating Lymphocyte Clones Derived from B16-F10 Murine Melanoma," The Journal of Investigative Dermatology 97(2):183-89, 1991.
Natali, et al., "Comparitive Analysis of the Expression of the Extracellular Matrix Protein Tenascin in Normal Human Fetal, Adult and Tumor Tissues," Int. J. Cancer, 47:811-16, 1991.
Oyama, et al., "Coordinate Oncodevelopmental Modulation of Alternative Splicing of Fibronectin Pre-Messenger RNA at ED-A, ED-B and CS1 Regions in Human Liver Tumors," Cancer Research 53:2005-11, 1993.
Peters, et al., "Expression of the Alternatively Spliced EIIIB Segment of Fibronectin," Cell Adhesion and Communication, 3:67-89, 1995.
Pober et al., "Ia Expression by Vascular Endothelium Is Inducible by Activated T Cells and by Human .gamma. Interferon," J. Exp. Med. 157: 1339-53, 1983.
Pohl, et al., "CD30-Antigen-Sepcific Targeting and Activation of T Cells via Murine Bispe

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods for treating the vasculature of solid tumors does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods for treating the vasculature of solid tumors, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods for treating the vasculature of solid tumors will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-859525

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.