Food or edible material: processes – compositions – and products – Fermentation processes – Of milk or milk product
Reexamination Certificate
2001-04-16
2002-05-21
Hendricks, Keith (Department: 1761)
Food or edible material: processes, compositions, and products
Fermentation processes
Of milk or milk product
C426S047000, C426S056000
Reexamination Certificate
active
06391351
ABSTRACT:
FIELD OF THE INVENTION
This application relates to the isolation of cell free extracts from a microorganism selected from the family Tetrahymenida, such as
Tetrahymena thermophila
. One aspect of the present invention is the provision of methods for the conversion of cholesterol present in foodstuffs into cholesterol desaturated derivatives, including provitamin D, using the cell free extracts.
BACKGROUND OF THE INVENTION
Animal milk is a complex mixture of different compounds, including lipids, proteins, minerals, sugars and vitamins (Russof, L. L. (1970). J. Dairy Science 53:1296-1302). The calcium, phosphate and vitamin D content of milk make it an adequate source of nutrients for bone formation (Fox, P. F. and McSweeney, P. L. H. (1998a) Salts of milk. In “Dairy Chemistry and Biochemistry”, chapter 5, Blackie Academic & Professional, London). This may be a key aspect of its role in nature, allowing mammalian newborns to complete the formation of the skeleton after birth. Mineral and vitamin components of milk are also important to preserve bone structure in adulthood. Milk is also relatively economical, compared to other animal protein sources, and thus it makes a valuable contribution to the human diet (Russof, L. L. (1970) J. Dairy Science 53:1296-1302).
The lipid fraction of milk includes cholesterol, however, which has been implicated as a causative agent of coronary artery disease (Artaud-Wild, S. M., Connor, S. L., Sexton, G., Connor, W. E. (1993) Circulation 88: 2771-2779). In effect, the increased blood cholesterol concentration in humans seems to have a direct positive correlation with coronary heart disease. Therefore patients with coronary heart disease (CHD) or hypercholesterolemia are commonly recommended to decrease their dietary cholesterol intake.
Other foodstuffs of animal origin such as eggs, which are commonly used in the preparation of a variety of food products, present the same problem. Because of the special organoleptic traits of milk and eggs, it is difficult to replace them by other products with less cholesterol content.
The general awareness of the risks associated with high blood cholesterol levels is an important factor limiting the consumption of food substances that have high cholesterol content by a health-conscious public. In the past years it has been a significant health trend away from red meat, milk and eggs. Accordingly, there is a continuing and real interest in decreasing the intake of food substances that have high cholesterol content.
To address these problems, there is a need for methods to produce low-cholesterol versions of normally high-cholesterol foodstuffs, such as whole milk and eggs. Such methods should preferably not appreciably change the physical and organoleptic properties of the foodstuffs. The nutritional value of the treated foodstuffs should be preferably maintained, especially the levels of those components that are lipid-soluble and that are important for human nutrition (e.g., vitamins A and D, and essential fatty acids). Thus, the food treatment methods should yield products with lower cholesterol content but which are otherwise similar to the untreated foodstuffs. Additionally, the novel methods should preferably not require expensive equipment and materials or potentially toxic materials, such as organic solvents.
A number of methods have been described in patents in the US and other countries for reducing the cholesterol content of foodstuffs. For example, cholesterol can be removed from foodstuffs by the use of physicochemical methods. For instance, the use of supercritical fluids to produce liquid egg having reduced cholesterol content has been proposed (Ogasahara et al, U.S. Pat. No. 5,116,628, 1992). However, the high temperatures and pressures needed for the process can denature proteins present in the foodstuffs. Likewise, the production of low cholesterol butter oil by vapor sparging (Conte et al, 1992, U.S. Pat. No. 5,092,964) is another example of a method, which, due to the extreme conditions used, is likely to denature proteins and alter organoleptic properties of the foodstuffs.
The use of organic solvents to extract cholesterol from foodstuffs has also been proposed. Thus, Fallis et al (1978, U.S. Pat. No. 4,104,286) have proposed the use of aqueous ethanol, saponification, and extraction with hydrocarbons and methanol to obtain free cholesterol, saponified fats and edible egg powder. This process uses extreme conditions and large quantities of organic solvents that may contaminate the processed foodstuffs. Extraction with liquid dimethylether (Yano et al, 1980, U.S. Pat. No. 4,234,619) is similarly inconvenient and does not appear to be selective for cholesterol as other neutral lipids are removed from the foodstuff. Johnson et al. (1991, U.S. Pat. No. 4,997,668) applied solvent extraction to milk, but again the method does not appear to be selective for cholesterol and utilizes organic solvents that may contaminate foodstuffs.
A variation on the use of organic solvents is to employ oils to extract cholesterol from either aqueous or dry foodstuffs, like egg yolk and dairy products. (Bracco et al, 1982, U.S. Pat. No. 4,333,959; Keen, 1991, U.S. Pat. No. 5,039,541; Conte et al, 1992, U.S. Pat. No. 5,091,203; Merchant et al, 1995, U.S. Pat. No. 5,378,487; Jackeschky, 1998, U.S. Pat. No. 5,780,095). Again, these methods do not selectively extract cholesterol and oils contaminated with cholesterol are inevitably produced, which is undesirable.
Removal of cholesterol by formation of complexes with cyclodextrins has also been proposed for fatty substances of animal origin (Courregelongue et al, 1989, U.S. Pat. No. 4,880,573) and specifically in the case of dairy products (Chung Dae-Won, 1999, Foreign Patent WO 9917620). The formation of complexes of cholesterol and saponin has also been described as a means to reduce cholesterol in milk (Richardson, 1994, U.S. Pat. No. 5,326,579). These methods are, however, too expensive for industrial applications.
A different approach is based on the use of enzymes that modify cholesterol. Thus, the use of cholesterol reductases, that modify cholesterol into poorly absorbed sterols, has been proposed (Beitz et al, 1990, U.S. Pat. No. 4,921,710; Ambrosius et al, 1999, U.S. Pat. No. 5,856,156). Another proposed enzymatic approach is the conversion of cholesterol into epicholesterol, which is then further modified by an epicholesterol dehydrogenase (Saito et al, 1999, U.S. Pat. No. 5,876,993). These methods have the disadvantage that they do not result in the conversion of cholesterol into useful compounds for human nutrition.
There is therefore a need for methods for treating foodstuffs to reduce the amount of cholesterol. Preferably, the cholesterol is converted to one or more substances that are useful for human nutrition.
When Tetrahymena is grown in the presence of exogenous sterols, the biosynthesis of tetrahymanol is completely inhibited and the added sterol is accumulated by the organism and, in most cases, metabolized to other sterols. Different types of biotransformations have been observed, including &Dgr;7 and &Dgr;22 desaturation and the removal of ethyl, but not methyl groups, from C24 (Mallory, F. B. and Conner, R. L. (1971) Lipids 6:149-153; Conner, R. L., Landrey, J. R., Joseph, J. M., Nes, W. R. (1978) Lipids 13: 692-696; Ferguson, K. A., Davis, F. M., Conner, R. L., Landrey, J. R. and Mallory, F. B. (1975) J Biol Chem 250:6998-7005).
In the case of cholesterol, Tetrahymena transforms this sterol into the desaturated derivatives: &Dgr;7,22-bis-dehydrocholesterol (a close analog of ergosterol, also called provitamin D2), &Dgr;22-dehydrocholesterol and &Dgr;7-dehydrocholesterol (provitamin D3). (Conner, R. L., Mallory, F. B., Landrey, J. R. and Iyengar, C. W. L. (1969), J Biol Chem 244:2325-2333). The desaturation of cholesterol at position 7 converts it into provitamin D3 and pro vit D derivatives, which upon UV irradiation in the skin can be activated to vitamin D. This biotransformation has seldom been observed in nature.
The present invention de
Hendricks Keith
Norris McLaughlin & Marcus P.A.
LandOfFree
Methods for treating foodstuffs using cell free extracts... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Methods for treating foodstuffs using cell free extracts..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods for treating foodstuffs using cell free extracts... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2894959