Methods for treating bipolar mood disorder associated with...

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S091200, C536S023100, C536S023500, C536S024200, C536S024310

Reexamination Certificate

active

06750010

ABSTRACT:

INTRODUCTION
Background
Bipolar Mood Disorder (BP)
Manic-depressive illness, or bipolar mood disorder (BP), is characterized by episodes of elevated mood (mania) and depression and is among the most prevalent and potentially devastating of psychiatric syndromes. The most severe and clinically distinctive forms of BP are BP-I (severe bipolar mood disorder) and SAD-M (schizoaffective disorder manic type), and are characterized by at least one full episode of mania, with or without episodes of major depression (defined by lowered mood, or depression, with associated disturbances in rhythmic behaviors such as sleeping, eating, and sexual activity). A milder form of BP is BP-II, bipolar mood disorder with hypomania and major depression. BP-I often co-segregates in families with more etiologically heterogeneous syndromes, such as unipolar major depressive disorder (MDD), which is a more broadly defined phenotype. See McInnes, L. A. and Freimer, N. B., Mapping genes for psychiatric disorders and behavioral traits, Curr. Opin. in Genet. and Develop., 5:376-381 (1995).
Treatment of Individuals With Bipolar Mood Disorder
An estimated 2-3 million people in the United States are affected by BP-I. Currently, individuals are typically evaluated for bipolar mood disorder using the clinical criteria set forth in the most current version of the American Psychiatric Association's
Diagnostic and Statistical Manual of Mental Disorders
(DSM). Many drugs have been used to treat individuals diagnosed with bipolar mood disorder, including lithium salts, carbamazepine and valproic acid. However, none of the currently available drugs is able to treat every individual diagnosed with severe BP-I (termed BP-I) and drug treatments are effective in only approximately 60-70% of individuals diagnosed with BP-I. Moreover, it is currently impossible to predict which drug treatments will be effective in particular BP-I affected individuals. Commonly, upon diagnosis affected individuals are prescribed one drug after another until one is found to be effective. Early prescription of an effective drug treatment is critical for several reasons, including the avoidance of extremely dangerous manic episodes and the risk of progressive deterioration if effective treatments are not found. Also, appropriate treatment may prevent depressive episodes in BP-I individuals; these episodes are also dangerous and are characterized by a high suicide rate. The high prevalence of the disorder, together with frequent occurrence of hospitalizations, psychosocial impairment, suicide and substance abuse, has made BP-I a major public health concern.
Genetic Basis for Bipolar Mood Disorder
Mapping genes for common diseases believed to be caused by multiple genes, such as BP-I, may be complicated by the typically imprecise definition of phenotypes, by etiologic heterogeneity and by uncertainty about the mode of genetic transmission of the disease trait. With psychiatric disorders there is even greater ambiguity in distinguishing between individuals who likely carry an affected genotype from those who are genetically unaffected. For example, one can define an affected phenotype for BP by including one or more of the broad grouping of diagnostic classifications that constitute the mood disorders: BP-I, SAD-M, MDD, and BP-II.
Thus, one of the greatest difficulties facing psychiatric geneticists is uncertainty regarding the validity of phenotype designations, since clinical diagnoses are based solely on clinical observation and subjective reports. Also, with complex traits such as psychiatric disorders, it is difficult to map the trait-causing genes genetically because: (1) the BP-I phenotype doesn't exhibit classic Mendelian recessive or dominant inheritance patterns attributable to a single genetic locus, (2) there may be incomplete penetrance i.e., individuals who inherit a predisposing allele may not manifest the disease; (3) the phenocopy phenomenon may occur, i.e., individuals who do not inherit a predisposing allele may nevertheless develop the disease due to environmental or random causes; (4) genetic heterogeneity may exist, in which case mutations in any one of several genes may result in identical phenotype.
The existence of one or more major genes associated with BP-I and with a clinically similar diagnostic category, SAD-M (schizoaffective disorder manic subtype), is supported by segregation analyses and twin studies (Bertelson et al., 1977; Freimer and Reus, 1992; Pauls et al., 1992). However, efforts to identify the chromosomal location of BP-I genes have yielded disappointing results in that reports of linkage between BP-I and markers on chromosomes X and 11 could not be independently replicated nor confirmed in the re-analyses of the original pedigrees (Baron et al., 1987; Egeland et al., 1987; Kelsoe et al., 1989; Baron et al., 1993). The possible localization of BP genes on chromosomes 18 (pericentromeric region) and 21q has been suggested, but in both cases the proposed candidate region is not well defined and there is equivocal support for either location (Berrettini et al. (1994) Proc. Natl. Acad. Sci. USA, 91, 5918-5921, Murray, J. C., et al. (1994) Science 265, 2049-2054; Pauls et al., Am. J. Hum. Genet. 57:636-643 (1995); Maier et al., Psych. Res. 59:7-15 (1995); Straub et al., Nature Genet., 8:291-296 (1994)). Recent investigations have led to the isolation of chromosome 18-specific brain transcripts which have been suggested to be positional candidates for bipolar disorder (Yoshikawa et al., Am. J. Med. Gen. 74, 140-149 (1997)).
Despite abundant evidence that BP has a major genetic component, linkage studies have not yet succeeded in definitively localizing a BP gene. This is mainly because mapping studies of psychiatric disorders have generally been conducted under a paradigm appropriate for mapping genes for simple Mendelian disorders, namely, using linkage analysis in the expectation of finding high lod scores that definitively signpost the location of disease genes. The follow up to early BP linkage studies, however, showed that even extremely high lod scores at a single location can be false positives. See Egeland, et al., Nature 325:783-787 (1987); Baron et al., Nature 326:289-292 (1987); Kelsoe et al., Nature, 342:238-243 (1989); and Baron et al., Nature Genet. 3:49-55 (1993). These earlier studies used largely uninformative markers and did not use stringent criteria for identifying affected individuals.
Linkage Disequilibrium Analysis
Linkage disequilibrium (LD) analysis is a powerful tool for mapping disease genes and may be particularly useful for investigating complex traits. LD mapping is based on the following expectations: for any two members of a population, it is expected that recombination events occurring over several generations will have shuffled their genomes, so that they share little in common with their ancestors. However, if these individuals are affected with a disease inherited from a common ancestor, the gene responsible for the disease and the markers that immediately surround it will likely be inherited without change, or IBD (“identical by descent”), from that ancestor. The size of the regions that remain shared (i.e. IBD) are inversely proportional to the number of generations separating the affected individuals and their common ancestor. Thus, “old” populations are suitable for fine scale mapping and recently founded ones are appropriate for using LD to roughly localize disease genes more approximately (Houwen et al., 1994, in particular FIG. 3 and accompanying text). Because isolated populations typically have had a small number of founders, they are particularly suitable for LD approaches; as indicated by several successful LD studies conducted in Finland (de la Chapelle, 1993).
LD analysis has been used in several positional cloning efforts (Kerem et al., 1989; MacDonald et al., 1992; Petrukhin et al., 1993; Hastbacka et al., 1992 and 1994), but in each case the initial localization had been achieved using conventional linkage methods. Positional cloning is the isolat

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods for treating bipolar mood disorder associated with... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods for treating bipolar mood disorder associated with..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods for treating bipolar mood disorder associated with... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3350244

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.