Methods for the suppression of neu mediated tumors by the adenov

Drug – bio-affecting and body treating compositions – Whole live micro-organism – cell – or virus containing – Genetically modified micro-organism – cell – or virus

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

424 936, 4353201, 935 55, 935 56, 935 57, A61K 4800, A01N 6300, C12N 1500

Patent

active

056519648

DESCRIPTION:

BRIEF SUMMARY
The present invention relates to methodology and associated genetic constructs for the suppression of oncogene-mediated, transformation, tumorigenesis and metastasis. In particular, this invention relates to the suppression of oncogenesis that is mediated by the HER-2/c-erb B-2
eu oncogene, an oncogene which has been correlated with a poor prognosis of breast and ovarian carcinoma in humans.
During the last decade, scientists have discovered that the occurrence of a number of human malignancies can be correlated with the presence and expression of "oncogenes" in the human genome. More than twenty different oncogenes have now been implicated in tumorigenesis, and are thought to play a direct role in human cancer (Weinberg, R. A., 1985). Many of these oncogenes apparently evolve through mutagenesis of a normal cellular counterpart, termed a "proto-oncogene", which leads to either an altered expression or activity of the expression product. There in, in fact, much data linking proto-oncogenes to cell growth, including their expression in response to certain proliferation signals (see, e.g., Campisi et al., 1983) and expression during embryonic development (Muller et al., 1982). Moreover, a number of the proto-oncogenes are related to either a growth factor or a growth factor receptor.
The c-erbB gene encodes the epidermal growth factor receptor (EGFr) and is highly homologous to the transforming gene of the avian erythroblastosis virus (Downward et al., 1984) The c-erbB gene is a member of the tyrosine-specific protein kinase family to which many proto-oncogenes belong. The c-erbB gene has recently been found to be similar, but distinct from, an oncogene referred to variously as c-erbB-2, HER-2 or neu oncogene (referred to herein simply as the neu oncogene), now known to be intimately involved in the pathogenesis of cancers of the human female breast and genital tract.
The neu oncogene, which encodes a p185 tumor antigen, was first identified in transfection studies in which NIH 3T3 cells were transfected with DNA from chemically induced rat neuroglioblastomas (Shih et al., 1981). The p185 protein has an extracellular, transmembrane, and intracellular domain, and therefore has a structure consistent with that of a growth factor receptor (Schechter et al., 1984). The human neu gene was first isolated due to its homology with v-erbB and EGF-r probes (Sebba et al., 1985).
Molecular cloning of the transforming neu oncogene and its normal cellular counterpart, the neu proto-oncogene, indicated that activation of the neu oncogene was due to a single point mutation resulting from one amino acid change in the transmembrane domain of the neu encoded p185 protein (Bargmann et al., 1986; Hung et al., 1989).
The neu oncogene is of particular importance to medical science because its presence is correlated with the incidence of cancers of the human breast and female genital tract. Moreover, amplification/overexpression of this gene has been directly correlated with relapse and survival in human breast cancer (Slamon et al., 1987). Therefore, it is an extremely important goal of medical science to evolve information regarding the neu oncogene, particularly information that could be applied to reversing or suppressing the oncogenic progression that seems to be elicited by the presence or activation of this gene. Unfortunately, little has been previously known about the manner in which one may proceed to suppress the oncogenic phenotype associated with the presence of oncogenes such as the neu oncogene.
An extensive body of research exists to support the involvement of a multistep process in the conversion of normal cells to the tumorigenic phenotype (see, e.g., Land et al., 1983). Molecular models supporting this hypothesis were first provided by studies on two DNA tumor viruses, adenovirus and polyomavirus. In the case of adenovirus, it was found that transformation of primary cells required the expression of both the early region 1A (E1A) and 1B (E1B) genes (Houweling et al., 1980). It was later found that the E1A gene p

REFERENCES:
patent: 4394448 (1983-07-01), Szoka, Jr. et al.
Vausden et al (1989) Oneogene 4, 153-158.
Shin (1979) Meth. Enzymol. 58, 370-379.
Yu et al., "Transcriptional Repression of the neu Protooncogene by the Adenovirus 5 E1A Gene Products," Proc. Natl. Acad. Sci. USA, 87:4499-4503, 1990.
Teramota et al., "Serum Enzyme Immunoassay Kit for the Detection of c-erbB-2 Oncoprotein," Annual AACI Meeting, Abstract #1446, 1991j.
Zhang et al., "Amplification and Rearrangement of c-erb B Proto-Oncogenes in Cancer of Human Female Genital Tract," Oncogene, 4:985-989, 1989.
Slamon et al., "Studies of the HER-2
eu Proto-Oncogene in Human Breast and Ovarian Cancer," Science, 244:707-712, 1989.
Steeg et al., "Altered Expression of NM23, a Gene Associated with Low Tumor Metastatic Potential, during Adenovirus 2 E1a Inhibition of Experimental Metastasis," Cancer Res., 48:6550-6554, 1988.
Smith & Ziff, "The Amino-Terminal Region of the Adenovirus Serotype 5 E1a Protein Performs Two Separate Functions when Expressed in Primary Baby Rat Kidney Cells," Mol. Cell Biol., 8(9):3882-3890, 1988.
Bargmann & Weinberg, "Increased Tyrosine Kinase Activity Associated with the Protein Encoded by the Activated neu Oncogene," Proc. Natl. Acad. Sci. USA, 85:5394-5398, 1988.
Pozzatti et al., "The E1a Gene of Adenovirus Type 2 Reduces the Metastatic Potential of ras-Transformed Rat Embryo Cells," Mol. Cell Biol., 8(7):2984-2988, 1988.
Whyte et al., "Two Regions of the Adenovirus Early Region 1A Proteins Are Required for Transformation," J. Virol., 62(1):257-265, 1988.
Egan et al., "Transformation by Oncogenes Encoding Protein Kinases Induces the Metastatic Phenotype," Science, 238:202-205, 1987.
Sassone-Corsi & Borrelli, "Promoter Trans-Activation of Protooncogenes c-fos and c-myc, but not c-Ha-ras, by Products of Adenovirus Early Region 1A," Proc. Natl. Acad. Sci. USA, 84:6430-6433, 1987.
Kraus et al., "Overexpression of the EGF Receptor-Related Proto-Oncogene erbB-2 in Human Mammary Tumor Cell Lines by Different Molecular Mechanisms, "EMBO J., 6(3): 605-610, 1987.
Slamon et al., "Human Breast Cancer: Correlation of Relapse and Survival with Amplification of the HER-2
eu Oncogene," Science, 235:177-182, 1987.
Pozzatti et al., "Primary Rat Embryo Cells Transformed by One or Two Oncogenes Show Different Metastatic Potentials," Science, 232:223-227, 1986j.
Stern et al., "p185, a Product of the neu Proto-Oncogene, Is a Receptorlike Protein Associated with Tyrosine Kinase Activity," Mol. Cell Biol,, 6(5):1729-1740, 1986.
Schecter et al., "The neu Gene: An erbB-Homologous Gene Distinct from and Unlinked to the Gene Encoding the EGF Receptor," Science, 229:976-978, 1985.
Brunet et al., "Concentration Dependence of Transcriptional Transactivation in Inducible E1A-Containing Human Cells," Mol. Cell. Bio., 8(11):4799-4807 (1988).
Felgner et al., "Gene Therapeutics: The Direct Delivery of Purified Genes in vivo and Their Application as Drugs, Without the Use of Retroviruses, Is Discussed," Nature, 349:351-352 (1991).
Frisch et al., "Adenovirus E1A Represses Protease Expression and Inhibits Metastasis of Human Tumor Cells," Oncogene, 5:75-83 (1990).
Harlow et al., "Monoclonal Antibodies Specific for Adenovirus Early Region 1A Proteins: Extensive Heterogeneity in Early Region 1A Products," J. of Virology, 55(3):533-546 (1985).
Hearing et al., "Sequence-Independent Autoregulation of the Adenovirus Type 5 E1A Transcription Unit," Mol. Cell. Bio., 5(11):3214-3221 (1985).
Nabel et al., "Site-Specific Gene Expression in Vivo by Direct Gene Transfer into the Arterial Wall," Science, 249:1285-88 (1990).
Moran et al., "Multiple Functional Domains in the Adenovirus E1A Gene," Cell, 48:177-178 (1987).
Ruley, "Adenovirus Early Region 1A Enables Viral and Cellular Transforming Genes to Transform Primary Cells in Culture," Nature, 304:602-606 (1983).
Senear et al., "Morphological Transformation of Established Rodent Cell Lines by High-Level Expression of the Adenovirus Type 2 E1a Gene," Mol. Cell. Bio., 6(4):125

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods for the suppression of neu mediated tumors by the adenov does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods for the suppression of neu mediated tumors by the adenov, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods for the suppression of neu mediated tumors by the adenov will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-631573

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.