Methods for the assessment of neuromuscular function by...

Surgery – Diagnostic testing – Sensitivity to electric stimulus

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06379313

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to apparatus and methods for assessment of neuromuscular function. More specifically, the invention relates to apparatus and methods for diagnosing peripheral nerve and muscle pathologies based on assessments of neuromuscular function.
BACKGROUND OF THE INVENTION
There are many clinical and non-clinical situations that call for rapid, reliable and low-cost assessments of neuromuscular function. Reliable and automated devices are needed to monitor neuromuscular function in surgical and intensive care settings. For example, muscle relaxants significantly improve surgical procedures and post-operative care by regulating the efficacy of nerve to muscle coupling through a process called neuromuscular blockade. They are, however, difficult to use in a safe and effective manner because of the wide variation and lack of predictability of patient responses to them. In another setting, an easy to use and reliable indicator would be beneficial in assessing potential contamination exposure situations by chemical agents. These agents disrupt neuromuscular function and effectively cause neuromuscular blockage, putting soldiers and civilians at risk.
The most common causes of neuromuscular disruption are, however, related to pathologies of the peripheral nerves and muscles. Neuromuscular disorders, such as, for example, Carpal Tunnel Syndrome (CTS), diabetic neuropathy, and toxic neuropathy, are very common and well known to the general public. Detection of such disorders involves determining the speed with which a nerve that is believed to be affected transmits a signal. One way to make such a determination involves stimulating a nerve that innervates a muscle, and then determining a delay between the onset of the stimulation and the muscle's response. The muscle response typically has two components, namely the M-wave component and the F-wave component. Detection and analysis of either of these two components of the muscle response provides information on the presence or absence of a neuromuscular pathology. Despite their extensive impact on individuals and the health care system, however, detection and monitoring of such neuromuscular pathologies remains expensive, complicated, and highly underutilized.
CTS is one of the most common forms of neuromuscular disease. The disease is thought to arise from compression of the median nerve as it traverses the wrist. CTS often causes discomfort or loss of sensation in the hand, and, in severe cases, a nearly complete inability to use one's hands. Highly repetitive wrist movements, as well as certain medical conditions, such as, for example, diabetes, rheumatoid arthritis, thyroid disease, and pregnancy, are thought to be factors that contribute to the onset of CTS. In 1995, the US National Center for Health Statistics estimated that there were over 1.89 million cases of CTS in the United States alone.
Effective prevention of CTS and other nervous system pathologies requires early detection and subsequent action. Unfortunately, the state of CTS diagnosis is rather poor. Even experienced physicians find it difficult to diagnose and stage the severity of CTS based on symptoms alone. The only objective way to detect CTS is to measure the transmission of neural signals across the wrist. The gold standard approach is a formal nerve conduction study by a clinical neurologist, but this clinical procedure has a number of important disadvantages. First, it is a time consuming process that requires the services of a medical expert, such as a neurologist. Second, the procedure is very costly (e.g., $600-$1000). Furthermore, it is not available in environments where early detection could significantly decrease the rate of CTS, such as the workplace where a significant number of causes of CTS appear. As a result of these disadvantages, formal electrophysiological evaluation of suspected CTS is used relatively infrequently, which decreases the likelihood of early detection and prevention.
The prior art reveals a number of attempts to simplify the assessment of neuromuscular function, such as in diagnosing CTS, and to make such diagnostic measurements available to non-experts. Rosier (U.S. Pat. No. 4,807,643) describes a portable device for measuring nerve conduction velocity in patients. This instrument has, however, several very important disadvantages. First, it requires placement of two sets of electrodes: one set at the stimulation site and one set at the detection site. Consequently, a skilled operator with a fairly sophisticated knowledge of nerve and muscle anatomy must ensure correct application of the device. Inappropriate placement of one or both of the electrode sets can lead to significant diagnostic errors. Second, the Rosier apparatus suffers from the disadvantage that it is not automated. In particular, it demands that the user of the device establish the magnitude of the electrical stimulus, as well as a response detection threshold. These parameters are difficult to determine a priori, and their rapid and correct establishment requires an advanced understanding of both neurophysiology and the detailed electronic operation of the apparatus.
Spitz, et al. (U.S. Pat. No. 5,215,100) and Lemmen (U.S. Pat. No. 5,327,902) have also attempted to enhance the earlier prior art. Specifically, they proposed systems that measure nerve conduction parameters between the arm or forearm and the hand, such as would be required for diagnosing CTS. In both cases, however, electrode supporting structures or fixtures were proposed that would substantially fix the positions at which the stimulation electrodes contact the arm and the detection electrodes contact the hand. Furthermore, these systems suffer, from several important disadvantages. First, both systems are rather large and bulky, because they include a supporting fixture for the arm and hand of an adult. This severely limits their portability and increases their cost. Second, these devices still require highly trained operators who can make the appropriate adjustments on the apparatus so as to insure electrode contact with the proper anatomical sites on the arm and hand. A third disadvantage of both systems is that they continue to demand multiple operator decisions regarding stimulation and detection parameters. Finally, these prior art systems suffer from the disadvantage that they do not automatically implement the diagnostic procedure and indicate the results in a simple and readily interpretable form.
There remains a need, therefore, for apparatus and methods for assessing neuromuscular function that are less time consuming, less expensive, and more available to a wider range of the general public (i.e., are more portable and easy to use). Such apparatus and methods are needed to provide more widespread early detection and prevention of neuromuscular pathologies, such as CTS, diabetic neuropathy, and toxic neuropathy. The present invention addresses these needs.
SUMMARY OF THE INVENTION
In accordance with the invention, apparatus and methods are provided for the substantially automated, rapid, and efficient assessment of neuromuscular function without the involvement of highly trained personnel. Assessment of neuromuscular function occurs by stimulating a nerve, then measuring the response of a muscle innervated by that nerve. The muscle response is detected by measuring the myoelectric potential generated by the muscle in response to the stimulus. One indication of the physiological state of the nerve is provided by the delay between application of a stimulus and detection of a muscular response. If the nerve is damaged, conduction of the signal via the nerve to the muscle, and, hence, detection of the muscle's response, will be slower than in a healthy nerve. An abnormally high delay between stimulus application and detection of muscle response indicates, therefore, impaired neuromuscular function.
Other indications of a physiological function of a nerve are provided by the F-wave latency between application of a stimulus and detection of a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods for the assessment of neuromuscular function by... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods for the assessment of neuromuscular function by..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods for the assessment of neuromuscular function by... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2920448

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.