Methods for surface modification of silica for use in...

Liquid purification or separation – Processes – Liquid/liquid solvent or colloidal extraction or diffusing...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C210S656000, C210S198200, C210S502100, C204S451000, C530S413000, C530S417000, C544S349000, C544S401000, C544S402000, C544S404000

Reexamination Certificate

active

06776911

ABSTRACT:

The present invention refers to the use of novel molecules able to bind tenaciously to silica, borosilicate and silicate surfaces, and thus to modify their properties and characteristics. When applied to silica-based chromatography, it offers important advantages in all cases in which it is necessary to modulate the interaction of analytes with the stationary phase. In capillary zone electrophoresis (CZE), such compounds will eliminate or invert the electroendoosmotic (EEO) flow, greatly simplifying the analysis of negatively-charged compounds and permitting the analysis of bio(macro)molecules via the direct use of naked capillaries.
The fused silica is constituted of three types of ionizable silanols: isolated, geminal and vicinal. The density of such groups has been estimated of the order of 5 silanols per nm
2
, whose average pK
a
, value has been estimated as 6.3 (M. S. Bello, L. Capelli e P. G. Righetti,
J. Chromatogr
. A 684, 1994, 311). Thus, at any operative pH value above 2, there will be a fraction of ionized silanols, fraction which will be larger and larger at progressively higher pH values till reaching a plateau at pH ca. 10.
The EEO flow in a fused silica column is produced by the electric field and is transmitted by the drag of ions in a thin liquid layer adjacent to the silica wall. The origin of the net positive charge in this thin liquid sheath is due to the progressive ionization of silanol groups in the wall. The electric potential generated by these fixed negative charges generates a diffuse double layer (called Debye-Hückel layer) in which there exist an excess of cations as compared with anions in the buffer present in solution. When the electric circuit is closed, this excess of cations is continuously perturbed and drugged toward the negative pole (the cathode). Since the cations coordinate a number of hydration-water molecules, the continuous migration of this excess of cations generates a net water transport from the anode to the cathode, called EEO flow. This flux continues as long as the electric field is applied, since the Debye-Hückel double layer is continuously perturbed by the applied potential difference and thus it has to be continuously reformed. The EEO flow in CZE has been studied in depth, due to its fundamental importance in understanding the results of electrophoretic separations e due to its strong influence on the reproducibility of transit times. The reproducibility of the EEO flow is in fact rather modest, particularly in proximity of the pK
a
, where the EEO vs. pH curve exhibits the highest slope. This is also due to the slow equilibration of the silica surface in changing from acidic to alkaline solutions, due, for instance, to strongly acidic or basic pH values adopted in washing the silica column after electrophoretic analysis of complex analytes, which could leave material adhering to the wall. This slow equilibration process causes dramatic variations of the EEO flux, which, in turn, could provoke poor reproducibility of the transit times of analytes, both between runs and during different days of analysis.
Per se, the EEO flux is not noxious to the electrophoretic process; on the contrary its presence is of fundamental importance when attempting separation in a single run of mixtures of anionic, cationic and neutral substances. At elevated EEO fluxes, it is possible that even negatively charged analytes, which would normally migrate to the anode, will be transported to the cathode, thus being detected at the monitoring window (in normal polarity runs the cathode is placed close to the detector). The presence of the EEO flux is of fundamental importance in methods such as electrokinetic micellar chromatography (MEKC), in which the analytes are adsorbed onto a surfactant (typically Na dodecyl sulphate, SDS). Since the surfactant micelles migrate towards the anode, but generally with lower velocities as compared with that of the EEO flux, at appropriate pH values, there is a large time window for separating both neutral and hydrophobic analytes which interact to some extent with said micelles. On the contrary, in numerous other cases, the presence of negative charges on the wall (to which the EEO flux is associated) is strongly detrimental to the electrophoretic separation. One of the most serious problems, in this case, is the adsorption of cationic analytes. Whereas such adsorption, in the case of small molecules, might be of modest entity, reversible and thus provoke only moderate losses of resolution, in the case of macromolecules, especially for proteins and peptides, this phenomenon is disastrous and could cause not only strong peak asymmetry, but even complete loss of analyte when totally and irreversibly adsorbed to the wall. Even in the case of DNA separations such EEO flow is noxious, since it causes peak asymmetry and elution of sieving liquid polymers from the capillary lumen. Over the years, many solutions have been proposed for solving this problem as reviewed in e.g., M. Chiari, M. Nesi e P. G. Righetti, in Capillary Electrophoresis in Analytical Biotechnology, P. G. Righetti, Ed., CRC Press, Boca Raton, 1996, pp. 1-36; F. E. Regnier e S. Lin, in High Performance Capillary Electrophoresis, M. G. Khaledi, Ed., Wiley, New York, 1998, pp. 683-728; G. M. McLaughilin et K. W. Anderson, in High Performance Capillary Electrophoresis, M. G. Khaledi, Ed., Wiley, New York, 1998, pp. 637-681.
Among the various solutions proposed for eliminating the EEO flux, we can recall here:
a) Variations in the type of buffer and its additives;
b) Adsorbed coatings (e.g., neutral polymers, neutral, charged or zwitterionic surfactants);
c) Covalently bound polymers, typically neutral macromolecules, such as acrylamides and celluloses, bound to the wall usually via bifunctional molecules (bridging or cross linking agents).
Covalently bound polymers have been found to be the most effective in quenching EEO flux, not only because the wall should be physically carpeted with neutral polymers, but also because, due to the anchoring of the polymers to the free silanols, there is an overall suppression of negative charges. However, such coatings are the most expensive among those offered on the market, and cannot be easily performed in individual laboratories, since good skills in organic chemistry and specialized equipment are required. In addition, this type of coating undergoes progressive deterioration during use, which calls for replacement of the capillary, this adding to the costs of analysis.
For all these reasons, dynamic capillary coatings, as obtained by additives to the background electrolyte, have been much preferred and definitely more popular among users. Among the buffer modifications there could be very simple ones, such as changes of the operative pH (e.g., at pH extremes the proteins are either repelled by the capillary, at alkaline pHs, or are not adsorbed, because the wall is neutral, at acidic pHs), or changes in the type of cation, or even the use of hydro-organic solvents, or yet strong changes in the buffer molarity (at high buffer concentrations interactions with the capillary wall are quenched or discouraged).
Each of these modifications can present some advantages, but also a number of disadvantages. A highly promising research line is the one which utilizes oligo-amines (especially tri-, tetra- and penta-amines). Oligo-amines are adsorbed to the wall via cooperative linkages, due to the presence of multiple charges on the skeleton of nitrogens and are thus able to minimize and often complete eliminate protein and peptide adsorption to the wall. Among these classes of compounds, the best ones appear to be spermine (a skeleton of four nitrogens separated by two or three carbon atoms) and TEPA (tetraethylene penta-amine) composed by a skeleton of five nitrogens separated by ethylene groups. This last molecule belongs to a large family of polyazotated compounds, both linear and branched. It would appear that the efficacy of such oligo-aminic compounds increases as a function of molecular mass as well as of the CH
2
/

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods for surface modification of silica for use in... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods for surface modification of silica for use in..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods for surface modification of silica for use in... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3312528

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.