Semiconductor device manufacturing: process – Having superconductive component
Reexamination Certificate
2006-03-28
2006-03-28
Mai, Anh Duy (Department: 2814)
Semiconductor device manufacturing: process
Having superconductive component
C438S962000, 37, 37, C505S190000
Reexamination Certificate
active
07018852
ABSTRACT:
A method for performing a single-qubit gate on an arbitrary quantum state. An ancillary qubit is set to an initial state |I>. The data qubit is coupled to an ancillary qubit. The state of the ancillary qubit is measured, and the data qubit and the ancillary qubit are coupled for a first period of time. A method for applying a single-qubit gate to an arbitrary quantum state. A state of a first and second ancillary qubit are set to an entangled initial state |I>. A state of a data qubit and the first ancillary qubit are measured thereby potentially performing a single qubit operation on the arbitrary quantum state. A first result is determined. The first result indicates whether the single qubit operation applied the single qubit gate to the arbitrary quantum state.
REFERENCES:
patent: 5307410 (1994-04-01), Bennett
patent: 5917322 (1999-06-01), Gershenfeld et al.
patent: 6459097 (2002-10-01), Zagoskin
patent: 6563311 (2003-05-01), Zagoskin
patent: 6897468 (2005-05-01), Blais et al.
patent: 2003/0164490 (2003-09-01), Blais
patent: 2003/0169041 (2003-09-01), Coury et al.
patent: 2004/0000666 (2004-01-01), Lidar et al.
patent: 2004/0109631 (2004-06-01), Franson et al.
patent: 2004/0165454 (2004-08-01), Amin et al.
patent: 2004/0238813 (2004-12-01), Lidar et al.
patent: 2005/0082519 (2005-04-01), Amin et al.
patent: 2005/0101489 (2005-05-01), Blais et al.
patent: WO-99/14614 (1999-03-01), None
U.S. Appl. No. 60/349,663, Zagoskin et al.
Averin, D.V., 2002, “Quantum Nondemolition Measurements of a Qubit,” Phys. Rev. Lett. 88, 207901.
Averin, D.V., R. Fazio, 2002, “Active suppression of dephasing in Josephson-junction qubits,” ArXiv.org preprint server: cond-mat/0212127.
Barenco, A., C.H. Bennett, R. Cleve, D.P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J.A. Smolin, and H. Weinfurter, 1995, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457-3467.
Bennett, C.H., G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W.K. Wootters, 1993, “Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels,” Phys. Rev. Lett. 70, pp. 1895-1899.
Blais, A., and A.M. Zagoskin, 2000, “Operation of universal gates in a solid-state quantum computer based on clean Josephson junctions between d-wave superconductors,” Phys. Rev. A 61, 042308.
Brown, K.R., D. A. Lidar, and K. B. Whaley, 2001, “Quantum computing with quantum dots on quantum linear supports,” Phys. Rev. A 65, 012307.
Burkard, G., H.-A. Engel, and D. Loss, 2000, “Spintronics and Quantum Dots for Quantum Computing and Quantum Communication,” published on ArXiv.org preprint server: cond-mat/0004182 (2000).
Childs, A.M., I.L. Chuang, and D.W. Leung, 2000, “Realization of quantum process tomography in NMR,” ArXiv.org preprint server: quant-ph/0012032.
Choi, M.-S., 2001, “Solid-state implementation of quantum teleportation and quantum dense coding,” Phys. Rev. A 64, 054301.
Choi, M.-S., M.Y. Choi, T. Choi, and S.-I. Lee, 1998, “Cotunneling Transport and Quantum Phase Transitions in Coupled Josephson-Junction Chains with Charge Frustration,” Phys. Rev. Lett. 81, 4240-4243.
Cirac, J.I., and P. Zoller, 1995, “Quantum Computations with Cold Trapped Ions,” Phys. Rev. Lett. 74, pp. 4091-4094.
Cottet, A., D. Vion, A. Aassime, P. Joyez, D. Esteve, and M.H. Devoret, 2002, “Implementation of a combined charge-phase quantum bit in a superconducting circuit,” Physica C 367, pp. 197-203.
DiVincenzo, D.P., 2000, “The Physical Implementation of Quantum Computation”, published on ArXiv.org preprint server: quant-ph/0002077.
Dodd, J.L., M. A. Nielsen, M.J. Bremner, and R.T. Thew, 2002, “Universal quantum computation and simulation using any entangling Hamiltonian and local unitaries,” Phys. Rev. A 65, 040301.
Falci, G., R. Fazio, G.M. Palma, J. Siewert, and V. Vedral, 2000, “Detection of geometric phases in superconducting nanocircuits,” Nature 407, 355-358.
Gottesman, D., and I.L. Chuang, 1999, “Demonstrating the Viability of Universal Quantum Computation using Teleportation and Single-Qubit Operations,” Nature 402, pp. 390-393.
Imamoglu, A., D.D. Awschalom, G. Burkard, D.P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, 1999, “Quantum Information Processing Using Quantum Dot Spins and Cavity QED,” Phys. Rev. Lett. 83, pp. 4204-4207.
Kane, B.E., 1998, “A silicon-based nuclear spin quantum computer,” Nature 393, 133-137.
Kane, B.E., 2000, “Silicon-based Quantum Computation,” published on ArXiv.org preprint server: quant-ph/0003031.
Kikkawa, J.M., I.P. Smorchkova, N. Samarth, and D.D. Awschalom, 1997, “Room-Temperature Spin Memory in Two-Dimensional Electron Gases,” Science 277, pp. 1284-1287.
Knill, E., R. Laflamme, and G.J. Milburn, 2001, “A scheme for efficient quantum computation with linear optics”, Nature 409, pp. 46-52.
Koashi, M., T. Yamamoto, and N. Imoto, 2001, “Probabilistic manipulation of entangled photons,” Phys. Rev. A, 63, 030301.
Korotkov, A.N., 1999, “Continuous quantum measurement of a double dot,” Phys. Rev. B 60, pp. 5737-5742.
Korotkov, A.N., 2001, “Selective quantum evolution of a qubit state due to continuous measurement,” Phys. Rev. B 63, 115403.
Leung, D.W, 2002, “Two-qubit Projective Measurements are Universal for Quantum Computation,” ArXiv.org preprint server: quant-ph/0111122.
Levy, J., 2001, “Quantum-information processing with ferroelectrically coupled quantum dots,” Phys. Rev. A 64, 052306.
Lidar, D.A., and L.-A. Wu, 2002, “Reducing Constraints on Quantum Computer Design by Encoded Selective Recoupling,” Phys. Rev. Lett. 88, 017905.
Loss, D., and D.P. DiVincenzo, 1998, “Quantum computation with quantum dots,” Phys. Rev. A 57, pp. 120-126.
Maassen van den Brink, A., 2002, “Quantum-efficient charge detection using a single-electron transistor,” Europhysics Letters 58, pp. 562-568.
Makhlin Yu., G. Schön, and A. Shnirman, 2001, “Quantum-State Engineering with Josephson-Junction Devices,” Rev. of Mod. Phys. 73, pp. 357-400.
Masanes, L.I., G. Vidal, J. I. Latorre, 2002, “Time-optimal Hamiltonian simulation and gate synthesis using homogeneous local unitaries,” ArXiv.org preprint server: quant-ph/0202042.
Mozyrsky, D., V. Privman, and M.L. Glasser, 2001,“Indirect Interaction of Solid-State Qubits via Two-Dimensional Electron Gas,” Phys. Rev. Lett. 86, pp. 5112-5115.
Nielsen, M.A., 2001, “Universal quantum computation using only projective measurement, quantum memory, and preparation of the |0> state,” ArXiv.org preprint server: quant-ph/0108020.
Nielsen, M.A., and I.L. Chuang, 1997, “Programmable Quantum Gate Arrays,” Phys. Rev. Lett. 79, pp. 321-324.
Nielsen, M.A., and I.L. Chuang, 2000,Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, 2000, pp. xxiii-xxv, 26-28, 65, 474-478.
Platzman, P.M., and M.I. Dykman, 1999, “Quantum Computing with Electrons Floating on Liquid Helium,” Science 284, pp. 1967-1969.
Raussendorf, R., and H.J. Briegel, 2001, “A One-Way Quantum Computer,” Phys. Rev. Lett. 86, pp. 5188-5191.
Preskill, J., 1998, “Reliable Quantum Computers,” Proc. R. Soc. London, Ser. A 454, pp. 385-410.
Shnirman, A., and G. Schön, 1998, “Quantum measurements performed with a single-electron transistor,” Phys. Rev. B 57, pp. 15400-15407.
Stucki, D., N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, 2002, “Quantum Key Distribution over 67 km with a plug & play system,” New Journal of Physics 4, 41.
Vidal, G., L. Masanes, and J.I. Cirac, 2002, “Storing Quantum Dynamics in Quantum States: A Stochastic Programmable Gate,” Phys. Rev. Lett. 88, 047905.
Vrijen, R, E. Yablonovitch, K. Wang,
Blais Alexandre
Lidar Daniel
Wu Lian-Ao
D-Wave Systems Inc.
Duy Mai Anh
Jones Day
Lovejoy Brett
The Governing Council of the University of Toronto
LandOfFree
Methods for single qubit gate teleportation does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Methods for single qubit gate teleportation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods for single qubit gate teleportation will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3582759