Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid
Reexamination Certificate
2001-11-23
2003-12-16
Park, Hankyel T. (Department: 1648)
Chemistry: molecular biology and microbiology
Measuring or testing process involving enzymes or...
Involving nucleic acid
C435S005000
Reexamination Certificate
active
06664063
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a method for separating genes from viruses existing in hydrosphere in an intact state, a method for fractionating thus separated genes, and a method for analyzing thus fractionated genes.
BACKGROUND ART
In 1989, Bergh et al. reported the existence of an enormous number of virus-like particles in hydrosphere, such as lake water and seawater as a result of their observation using an electron microscope [Bergh et al.: Nature 340:467-468(1989)]. In general, it is difficult to discriminate viruses from one another, which are similar in form, by the observation of viruses with an electron microscope. A method is known wherein a viral coat is broken with the aid of a surfactant and/or a proteolytic enzyme to analyze released genes. However, chains of genes, which are released in a solution, are often broken by, for example, mechanical shearing force, and it is difficult to separate genes in an intact state. When performing gene analysis, it is difficult to analyze entire viruses because, unlike prokaryotes or eukaryotes, common gene sequences have not been known. A general separation method, by concentration using polyethylene glycol, results in differences in viruses which precipitate depending on its concentration. Therefore, there is a limit on the analysis of every kinds of viruses in hydrosphere in this method.
SUMMARY OF THE INVENTION
The object of the present invention is to provide a method for separating genes from viruses existing in hydrosphere in an intact state, a method for fractionating thus separated genes, and a method for analyzing thus fractionated genes.
We had keenly studied in order to attain the above object and found that virus DNA could be separated in an intact form by performing ultracentrifugation to concentrate virus particles in water samples, embedding the virus particles in a gel, followed by treating with a proteolytic enzyme and/or a surfactant. This led to the completion of the present invention.
Specifically, the present invention provides a method for separating virus genes comprising the steps of:
(a) separating virus particles from hydrosphere;
(b) embedding the virus particles obtained in step (a) in a gel; and
(c) treating the embedded product obtained in step (b) with a proteolytic enzyme and/or a surfactant.
The present invention further provides a method for fractionating virus genes comprising the steps of:
(a) separating virus particles from hydrosphere;
(b) embedding the virus particles obtained in step (a) in a gel;
(c) treating the embedded product obtained in step (b) with a proteolytic enzyme and/or a surfactant; and
(d) performing electrophoresis on the proteolytic enzyme- and/or surfactant-treated product obtained in step (c).
Furthermore, the present invention provides a method for analyzing virus genes comprising the steps of:
(a) separating virus particles from hydrosphere;
(b) embedding the virus particles obtained in step (a) in a gel;
(c) treating the embedded product obtained in step (b) with a proteolytic enzyme and/or a surfactant;
(d) performing electrophoresis on the proteolytic enzyme- and/or surfactant-treated product obtained in step (c); and
(e) extracting genes from the electrophoresis gel obtained in step (d) to analyze the genes.
The present invention will be described in more detail as follows.
FIG. 1
shows an embodiment of methods according to the present invention for separating, fractionating, and analyzing virus genes existing in hydrosphere. At the outset, virus particles, existing in sample water obtained from hydrosphere, are separated (step A). Subsequently, the virus particles thus obtained are embedded in a gel (step B). The embedded product is then treated with proteinase K, SDS or the like to decompose viral coats (step C), followed by the fractionation of virus genes (step D). Finally, the fractionated genes are analyzed by Southern blot analysis or Northern blot analysis (step E). More specifically, such intact separation of virus genes can be carried out as follows.
1. Separating Virus Genes from Hydrosphere
(1) Collecting Sample Water Containing Virus Particles From Water
“Hydrosphere” refers to all aqueous environments including natural and artificial aqueous environments that could contain virus particles. For instance, a natural aqueous environment includes seas, lakes, and rivers. An artificial aqueous environment includes, but is not limited to, a culture solution, active sludge, wastewater, and blood. Sample water containing virus particles includes those derived from the above hydrosphere. For instance, sample water can be collected by recovering a water sample from a desired depth in seas and lakes onto a ship or onto land using Niskin water sampler, Bandon water sampler, and so on.
(2) Removing Impurities From Sample Containing Virus Particles
Various organisms as shown in
FIG. 2
generally exist in seawater, lake water, and river water. The method of the present invention is directed to virus particles existing in these waters (hydrosphere).
In order to separate virus particles from sample water, impurities are first removed from sample water obtained in (1) above. Impurities can be removed by, for example, low speed centrifugation and/or filtration. Here, “impurities” refer to relatively large sample water components, for example, soil particles, clay mineral, fraction of animal tissue and plant texture, phytoplankton and zooplankton, and detritus. Preferably, low speed centrifugation is carried out at about 6,000×g for 10 to 15 min. Centrifuges that can be used for low speed centrifugation include Model HP-30 manufactured by Beckman and Model CR 26H manufactured by Hitachi, Ltd. Further, when impurities are removed by filtering a sample solution, filter paper (for example, No. 3 manufactured by WATT MANN CO,. LTD) may be used. When sample water is limpid, the step of low speed centrifugation may be omitted.
(3) Purifying Virus Particles
Purification of virus particles from the impurities-removed solution obtained in (2) above can be carried out by filtration. Filters that can be used for purification of viruses include those having pores with a diameter of 0.1 to 0.45 &mgr;m, preferably 0.20 to 0.22 &mgr;m. For example, hydrophilic polyvinylidene difluoride membrane having a pore diameter of 0.22 &mgr;m (Model GVWP manufactured by Millipore) may be used. Pore diameter may be properly selected according to the size of organisms to be removed by filtration, for example, referring to FIG.
3
. In general, most bacteria living in water can be removed by using a filter having a pore diameter of 0.20 to 0.22 &mgr;m. Filter materials include hydrophilic polyvinylidene difluoride (PVDF), hydrophilic polytetrafluoroethylene (PTFE), and polycarbonate, having low absorption to protein. In order to perform filtration in a more rapid manner, in filtration, pressure is preferably applied. For example, filtration pressure is not more than 100 mmHg, preferably not more than 30 mmHg.
(4) Separating Virus Particles
Virus particles from the filtrate obtained in (3) above can be separated by precipitating virus particles by ultracentrifugation. Ultracentrifugation is preferably carried out at 100,000 to 130,000×g for 3 to 16 hr. Centrifuges that can be used for ultracentrifugation include Model CP 90&agr; manufactured by Hitachi, Ltd and Optima XL-100K manufactured by Beckman.
(5) Treating With Nuclease
The precipitate of virus particles obtained in (4) above sometimes contains a large quantity of naked nucleic acids, and nucleic acids absorbed and held on inorganic particles and detritus, which are derived from other organisms. These nucleic acids can be removed by treating them with nuclease. DNase is used to decompose DNA and RNase is used to decompose RNA. That is, the virus precipitate obtained in (4) above is suspended, for example, in a TM buffer or TE buffer to incubate with a proper amount of DNase or RNase. Adding an EDTA solution, an RNasin solution and the like can stop the reaction. In this way, a suspension of v
Kurane Ryuichiro
Maruyama Akihiko
Yagi Hisaaki
National Institute of Advanced Industrial Science and Technology
Park Hankyel T.
LandOfFree
Methods for separating,fractionating and analyzing gene of... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Methods for separating,fractionating and analyzing gene of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods for separating,fractionating and analyzing gene of... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3182426